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Abstract

I Introduction and motivation

By 2025, nearly 64 billion Internet-of-Things (IoT) devices are expected to be connected
across various cutting-edge environments, such as Smart Cities, Industry 4.0, and crowd-
sensing [1]. The growth of IoT promises not only to enhance service quality and acces-
sibility but also to revolutionize the user’s experience, as it fosters intelligent ecosystems
that significantly reduce human intervention, thus streamlining processes, cutting costs,
and mitigating errors. However, the unique objectives of these environments also increase
the complexity of optimizing device and service performance.

From a scenario perspective, the vast array of IoT devices employed nowadays includes
Single-Board Computer (SBC) devices like Raspberry Pi (RPi), which have gained pop-
ularity due to their flexibility, affordability, extensive support, and available peripherals
[2]. However, the connectivity and resource constraints of SBCs, and IoT devices, create
numerous cybersecurity concerns for diverse platforms [3]. A significant problem is the
presence of unauthorized devices with identical hardware and software configurations as
authorized nodes, launching attacks impacting application areas such as Industry 4.0 [4],
smartphones [5], or Internet of Battlefield Things (IoBT) [6]. These malicious devices can
be present as a consequence of various cybersecurity threats [7], including i) device spoof-
ing, where an attacker replaces a legitimate device with a malicious one using the same
identity; ii) unauthorized device deployment, involving the installation of a new device
with an unregistered identity; and iii) Sybil attack, where a malicious device uses multiple
identities to mimic numerous devices. Consequently, other threats like sensitive informa-
tion leakage, data poisoning, and privilege escalation and lateral movements may emerge
from spoofed devices.

To solve these arising cybersecurity problems, behavioral data science has expanded
from studying human behaviors [8] to modeling device behaviors [9], with a focus on cre-
ating device behavior patterns (fingerprints) to optimize performance and detect potential
issues early [10]. Two primary IoT application scenarios for constructing device fingerprints
are i) device identification and authentication at different granularity levels [11], and ii)
detecting cyberattacks, malfunction, or misbehavior [12, 13]. Various studies have applied
device fingerprinting to both scenarios [14, 15]. In the identification scenario, behavioral
data science has significantly enhanced device identification capabilities, transcending the
constraints associated with conventional methodologies that predominantly rely on the
utilization of names, identifiers, labels, or tags for device recognition [16]. A critical short-
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coming of traditional strategies is their susceptibility to alterations and duplications. These
conventional techniques often lack the dynamism to adapt to the rapidly evolving land-
scape of IoT scenarios, where many devices are being deployed with high mobility. These
issues are especially relevant in scenarios with an exponential increase in the quantity of
devices, such as smart industries or agriculture. Therefore, device identification based on
behavior fingerprinting has significantly improved upon traditional solutions by focusing
on type [11], model [17], and individual [18] granularity levels. On the other hand, de-
tecting misbehavior or malfunction due to cybersecurity issues has seen the rise of device
fingerprinting as a promising solution. Numerous works create "normal" behavioral fin-
gerprints to detect changes caused by issues such as cyberattacks, malware execution, or
device malfunctioning [12, 19].

At the individual identification granularity level, hardware behavior fingerprinting
stands out as a promising avenue for uniquely identifying identical devices, a necessity
in today’s interconnected technological landscape. Despite its potential, this domain is
still burgeoning, characterized by open challenges and a lack of dedicated research specifi-
cally targeting the identification of identical single-board devices [20]. The complexity of
this task is amplified by the inherent similarities between such devices, necessitating in-
novative and precise identification methodologies. In the broader context, for devices that
are not constrained by components and resources, the existing literature advocates for the
adoption of hardware behavioral fingerprinting [21]. This technique is instrumental in dis-
cerning minor performance variances that are a byproduct of manufacturing imperfections
[22]. By meticulously analyzing these subtle differences, hardware behavioral fingerprint-
ing provides a granular level of device characterization, paving the way for accurate device
identification. However, it is important to distinguish between identification and authenti-
cation in this context. While identification involves recognizing a device from a set based
on its unique characteristics, authentication goes a step further by verifying the legitimacy
of the device. Authentication addresses the question of whether a device is who it claims
to be, offering a layer of security that mere identification does not.

The hardware behavior analysis for device identification has been partially performed
in the literature but without following a clear methodology on the steps to be done in or-
der to achieve a successful solution [20]. Therefore, there exists a necessity for this specific
methodology, rooted in the critical need to bolster cybersecurity measures in network in-
frastructures that incorporate identical single-board computer devices, such as Raspberry
Pi. The set of these devices working in a coordinated manner is what allows to offer IoT
services based on crowdsourcing or joint data collection/processing. These devices, often
deployed extensively and in settings where resources are scarce, are vulnerable to a myriad
of security threats [23, 24] that affect the trustworthiness of the offered services. These
range from attempts at malicious device impersonation to the introduction of unauthorized
devices into a network. Ensuring the ability to identify and authenticate devices precisely
becomes a non-negotiable requirement, pivotal for maintaining the integrity and resilience
of the service. Therefore, a consistent security level is essential in order to have trustwor-
thy services. Implementing hardware behavior fingerprinting in these contexts demands
a level of precision and innovation that transcends conventional identification methods.
The challenges stem from the subtle differences between identical devices and the con-
straints imposed by their limited resources [25]. Addressing these challenges necessitates a
concerted research effort, aimed at unraveling the complexities of hardware behavior fin-
gerprinting, selecting the most promising hardware performance characteristics, developing
robust identification algorithms, and establishing best practices for practical application.

Moreover, having a complete identification solution based on hardware is critical for
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IoT security. However, in real-world scenarios, individual identification solutions do not
work isolated from other cybersecurity applications. They should be integrated with other
network and behavior solutions that aim to cover heterogeneous cybersecurity issues such
as malware. In this context, the integration of hardware behavior fingerprinting for single-
board devices becomes a strategic component of a larger security framework. Uniquely
identifying and verifying each device enables a solid foundation for secure communication
and data integrity. However, other tools are still required to achieve a more complete
security level. This level of security is not just about protecting information; it is about
ensuring the operational effectiveness and success of IoT endeavors.

To bolster the effectiveness of hardware behavior fingerprinting for identical single-
board devices, it is imperative to identify the most relevant data sources to solve this
issue. Then, it is required to have a comprehensive benchmark and a well-curated dataset
in place [26]. These resources serve as critical tools in the verification and validation of the
methodology, ensuring its accuracy, reliability, and applicability in real-world scenarios. A
precise benchmark is necessary to systematically evaluate the performance of the devices,
providing a standardized measure that can be used to discern the subtle variances in hard-
ware behavior [27]. This becomes particularly crucial when dealing with identical devices,
where the differences are minuscule yet significant for accurate identification. However,
there are no benchmarking applications available in the literature for low-level hardware
behavior fingerprinting [26]. In tandem with a robust benchmark, a rich dataset plays
a vital role in the process. It acts as a repository of hardware device behavior profiles,
capturing the intricacies and unique characteristics of each device. This dataset becomes
a reference point, aiding in the training of algorithms and serving as a benchmark for val-
idation. The combination of a comprehensive benchmark and a detailed dataset ensures
a holistic approach to device identification, fortifying the hardware behavior fingerprint-
ing methodology. The motivation for establishing such rigorous verification tools stems
from the evolving needs of the IoT and Edge computing paradigms, where devices are in-
creasingly interconnected, and environment integrity is paramount. In these scenarios, the
ability to precisely identify and authenticate devices is not just a security measure; it is a
necessity for ensuring the seamless operation of the network and the trustworthiness of the
data being exchanged. By investing in the development of precise benchmarks and com-
prehensive datasets, the hardware behavior fingerprinting methodology can be empowered,
enhancing its precision and reliability. This, in turn, paves the way for a future where iden-
tical single-board devices can be seamlessly integrated into complex networks, operating
securely and efficiently, and contributing to the robustness of the digital infrastructure.

Upon acquiring the fingerprints, a riveting domain of research emerges, centered on em-
ploying optimal techniques for processing and evaluating them. While statistical methods
have held a dominant position in this field for decades, the advent of Artificial Intelligence
(AI), specifically Machine Learning (ML) and Deep Learning (DL), has precipitated a
paradigm shift, gaining the most prominence in the solutions being developed and deployed
today [28]. The complexity and diversity of IoT device behaviors necessitate sophisticated
DL models capable of capturing intricate patterns and variances. Techniques like Con-
volutional Neural Networks (CNNs) are being adapted to discern spatial relationships in
hardware fingerprints [29], while Recurrent Neural Networks (RNNs), including their more
sophisticated variant, Long Short-Term Memory (LSTM) networks, are being deployed
for temporal data analysis, crucial for understanding device behavior over time [17]. Au-
toencoders have also carved a niche in this sector, enabling dimensionality reduction for
high-volume fingerprint data and anomaly detection by reconstructing normal device be-
havior and highlighting deviations [30]. Additionally, recent advances in Graph Neural
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Networks (GNNs) allow for the incorporation of topological data, facilitating the modeling
of complex relationships within networks of interconnected IoT devices. Finally, attention-
based transformer models are achieving extraordinary success in language-focused tools,
such as ChatGPT [31], and can also be applied to other time series data. However, the
applicability of all these modern techniques is conditioned by the lack of available datasets,
as they require the existence of exhaustive datasets capable of training the required models
[32]. Therefore, after having enough data, the next challenge is to explore the available
ML/DL methods to find which one could provide the best performance in individual de-
vice identification. Here, new network architectures can be created to better model device
behavior and enhance identification and authentication capabilities.

Besides, a fully functional and trustworthy solution should consider the possible security
issues intrinsic to the hardware-based individual device identification [33]. Adversarial
attacks arise as one of the main threats targeting identification solutions in IoT. These
sophisticated attacks present a formidable challenge, as they are specifically crafted to
manipulate or evade the security mechanisms in place, potentially leading to unauthorized
access, data breaches, and compromised network integrity [34, 35]. Adversarial attacks
in the context of single-board device identification exploit the mechanisms designed to
ensure device authenticity and network security. By subtly altering device behavior or
mimicking the characteristics of legitimate devices, adversaries can deceive identification
systems, resulting in misclassification or false acceptance of rogue devices. This not only
undermines the trustworthiness of the network but also opens the door to further malicious
activities, jeopardizing the confidentiality, integrity, and availability of data and services.
Delving deeper into the nature of these adversarial attacks, there is a rising trend in context-
based and ML/DL-based evasion tactics. Context-based attacks cleverly manipulate the
environmental conditions or operational context of devices, aiming to distort the data
used for identification and thereby mislead the system [36]. These attacks are particularly
insidious as they exploit the natural variability in device behavior due to changes in external
factors, making them harder to detect and counteract. On the other hand, ML/DL-
based evasion attacks represent a sophisticated and calculated assault on single-board
device identification systems. Adversaries employing these techniques utilize advanced ML
models to learn the patterns and characteristics of legitimate devices. Armed with this
knowledge, they craft adversarial samples that closely mimic authentic devices, effectively
blurring the lines between legitimate and rogue devices [37]. These samples are then
used to probe and deceive the identification system, leading to erroneous classifications
and potentially granting unauthorized access to the network. These attacks exploit the
inherent complexities and variabilities in device behavior and the advanced capabilities of
ML/DL models to deceive and compromise network security. Addressing these challenges
requires a comprehensive and adaptive security strategy capable of anticipating, detecting,
and mitigating the myriad of threats posed by adversarial attacks.

Apart from all the work to be done in the individual identification of IoT devices con-
text, the authentication problem is an open challenge on its own due to its more complex
requirements [38]. While hardware behavioral fingerprinting offers a robust foundation for
identification, extending this approach to include authentication mechanisms is vital for
ensuring a higher degree of security in interconnected systems. However, the devices from
the same model can exhibit very similar or even overlapping behavioral characteristics
due to standardized production processes. This similarity in hardware behavior makes
it challenging to distinguish between legitimate and unauthorized devices based solely
on hardware behavioral data, as data distributions merge together. Therefore, authen-
tication requires a much finer granularity of data analysis. Here, traditional processing
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approaches and ML/DL techniques have not achieved remarkable results. However, new
ML/DL algorithms with advanced pattern recognition capabilities, such as attention-based
transformers, could improve authentication performance based on hardware performance
behavior.

As a summary of the open challenges, the literature suggests that while hardware
behavior fingerprinting presents a promising solution, the field is still nascent, with consid-
erable research gaps in methodology and practice for single-board devices. The individual
identification of these devices requires innovative techniques to distinguish subtle manu-
facturing differences, as well as precise benchmarks and extensive datasets for validating
new algorithms. The evolution of AI, particularly ML and DL, is shifting the paradigm for
processing and evaluating device fingerprints, and new techniques are required in this area.
Besides, there remains a critical need for the integration of hardware fingerprinting with
broader network security measures to address various cybersecurity threats. Next, adver-
sarial attacks pose a formidable risk, leveraging context-based tactics or ML/DL models
to craft samples that mimic legitimate devices, necessitating a robust, adaptive security
strategy that encompasses the comprehensive identification and mitigation of such threats.
Finally, it is vital to explore the device authentication problem leveraging more complex
ML/DL solutions. Authentication solutions have to generate advanced patterns in the
fingerprint, generating unique models for each device based on its intrinsic characteristics.

Based on the previous considerations, this PhD Thesis explores the feasibility of indi-
vidual device identification and authentication based on hardware performance behavior
fingerprinting. It should investigate the methodology definition, its application in real
frameworks and tools, their integration in real-world devices and scenarios, and the as-
sociated security threat analysis and mitigation. In this sense, several research questions
arose from the previous challenges, guiding the research process of this PhD Thesis, and
are presented as follows:

• RQ1: What is the current status of device behavior fingerprinting solutions applied
in individual device identification and which data sources, techniques, application
scenarios and datasets are present in the literature?

• RQ2: Which methodology should be followed to uniquely identify IoT devices in a
scalable manner while leveraging on hardware behavior and ML/DL techniques?

• RQ3: Which hardware metrics can be extensively collected for measuring hardware
performance and generating the required datasets for late behavior fingerprinting?

• RQ4: How can individual device identification be integrated with other behavior-
based cybersecurity solutions deployed in real-world scenarios?

• RQ5: Which ML/DL techniques can achieve the best performance for individual
device identification?

• RQ6: How can the resilience of hardware behavior-based individual device identifica-
tion models be improved against context- and ML/DL-focused adversarial attacks?

• RQ7: Can attention-based ML/DL techniques, such as transformers, enable the in-
dividual identification of devices following an anomaly detection approach? Which
resources are required?
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II Objectives

The main goal of this PhD thesis is to advance the field of device behavior fingerprinting
for improving the identification and security of IoT devices, with a particular focus on
single-board computers and resource-constrained systems. The research aims to develop
novel methodologies and frameworks for individual device identification, leveraging ML
and DL techniques. By examining various application scenarios, including Smart Cities,
Industry 4.0, and the Internet of Battlefield Things, the thesis aims to address the in-
creasing cybersecurity threats, such as unauthorized device deployment, and other issues
emerging due to the exponential growth of interconnected devices in the network-based
computing world.

The thesis explores different aspects of device behavior fingerprinting, including data
sources, techniques, application scenarios, and datasets. The research focuses on solving
the unique problems faced when defining methodologies for identifying identical single-
board computers based on hardware behavior fingerprinting and ML. Some of these open
issues are the data availability and the solution integration in real-world scenarios. There-
fore, they are explored as part of the research objectives. The research also investigates
adversarial attacks and defenses in IoT fingerprinting, aiming to develop resilient archi-
tectures. Lastly, the work explores the authentication problem, where each device should
be recognized without considering others and, therefore, more complex ML models are
necessary. From the goal of covering the previous aspects, several specific objectives are
derived as subsequently presented, indicating the research questions related to them:

O.1. Analyze the current state of the art regarding device behavior fingerprinting for
individual identification through comprehensive review, analysis, and comparison of
data sources, techniques, applications, and datasets to guide future research and
solutions (RQ1).

O.2. Identify existing gaps in the literature in individual device identification based on
hardware behavior fingerprinting and the required steps to cover them (RQ1).

O.3. Address single-board device identification challenges with a novel methodology lever-
aging hardware behavioral fingerprinting, ML/DL techniques, and essential proper-
ties for improved accuracy and robustness (RQ2).

O.4. Develop a low-level hardware benchmarking solution for Single-Board Computers to
enable Edge-based AI solutions and versatile device management through extensive
performance datasets (RQ3).

O.5. Integrate the single-board device identification solution into a security framework
using behavioral fingerprinting and ML/DL techniques to accurately detect diverse
cyber-attacks (RQ4).

O.6. Find the best ML/DL-based techniques for individual identification, iterating over
the available datasets to achieve the best performance (RQ5).

O.7. Investigate the impact of context and ML/DL-focused attacks against hardware
behavior-based device identification solutions leveraging ML/DL models (RQ6).

O.8. Implement and evaluate defense mechanisms to strengthen the solution resilience
against adversarial attacks while maintaining its performance in the context of hard-
ware behavior-based device identification (RQ6).
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O.9. Explore the individual authentication problem to verify the capabilities of attention-
based anomaly detection ML/DL models to detect advanced patterns in hardware
behavior data (RQ7).

III Methodology

This PhD Thesis was conducted following a scientific approach based on the continuous
study of the state of the art and the analysis of the results obtained during the different
stages of the research. This thesis is defined as a set of six papers published in high-impact
journals indexed in the Journal Citation Reports (JCR).

The first step was to solve RQ1 and provide a complete view of device behavior finger-
printing. A broad exploration of the existing literature was undertaken to provide a com-
prehensive understanding of the current status of device behavior fingerprinting solutions
in cybersecurity. This exploration encompassed a variety of academic publications, span-
ning across journals and conference proceedings, ensuring a wide coverage of the topic. The
gathered literature was meticulously categorized and analyzed based on specific criteria,
such as the data sources used for fingerprinting, the techniques employed, the application
scenarios addressed, and the datasets utilized. This granular categorization facilitated the
identification of prevalent trends, commonly used methods, and potential gaps within the
current body of knowledge. The analysis provided a nuanced understanding of how device
behavior fingerprinting is being applied across different domains in cybersecurity, highlight-
ing its versatility and the variety of ways it can be implemented. This extensive review
culminated in a holistic view of the field, offering valuable insights and a solid foundation
for future research endeavors in device behavior fingerprinting. All these considerations
resulted in the first publication of this PhD Thesis, presented in the first chapter (A Survey
on Device Behavior Fingerprinting: Data Sources, Techniques, Application Scenarios, and
Datasets (Article 1–IEEE_COMST)), which covered the first two Objectives of the thesis.

After performing the state-of-the-art analysis and identifying the current gaps in IoT
individual identification solutions, the focus moved to solve RQ2 and address Objective 3,
which addresses the unique IoT device identification problem. In order to uniquely identify
IoT devices based on their hardware behavior while leveraging ML and DL techniques, a
structured approach was employed. The process commenced with the collection of a di-
verse and extensive set of hardware behavior data from a variety of RPi models. This data
served as the foundation for the subsequent analysis. Following the data collection phase,
pre-processing techniques were applied to refine and prepare the data for the ML and
DL models. Various ML/DL models were then selected and trained on the pre-processed
data, resulting in the development of identification algorithms. The performance of these
algorithms was rigorously evaluated using common ML/DL classification metrics and real
SBC devices, ensuring their accuracy and effectiveness in real-world scenarios. Afterward,
the methodology was compared with other approaches existing in the literature, although
they did not present a structured set of steps in order to develop an identification solution.
In this comparison, the methodology performance improvement was contrasted practi-
cally. This comprehensive approach facilitated a clear and practical methodology for the
unique identification of IoT devices based on their hardware behavior, leveraging the latest
advancements in ML and DL. The proposal and validation of the individual device identi-
fication methodology resulted in the second chapter (A methodology to identify identical
single-board computers based on hardware behavior fingerprinting (Article 2–JNCA)).

At this point, a limitation in the research line arose regarding data availability and
how to collect it. A specialized benchmarking tool and dataset were developed as part
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of this PhD thesis and utilized to address the challenge of extensive data collection for
measuring hardware performance and generating the required datasets for later behavior
fingerprinting. This tool was meticulously designed to measure and record the performance
of various hardware components across a range of IoT devices, ensuring a standardized and
comprehensive data collection process. The tool was executed then in some SBC devices
to extract a complete and realistic dataset. The collected data was then subjected to
rigorous validation and quality assurance processes, verifying its accuracy and reliability.
In addition to the data collection, clear guidelines were provided on how to structure and
store the data, facilitating its integration into comprehensive datasets. This meticulous
approach ensured that the data collected was not only extensive but also of high qual-
ity, providing a solid foundation for subsequent behavior fingerprinting applications and
analyses. The benchmarking application, together with the collected dataset, are publicly
available for other researchers in the area. This work resulted in the third chapter of this
thesis (LwHBench: A low-level hardware component benchmark and dataset for Single
Board Computers (Article 3–IoT)), answering RQ3 and completing Objective 4.

A holistic and interoperable framework was developed once the individual identification
viability was verified with the exhaustive dataset collected using the benchmark applica-
tion. It sought to integrate individual device identification with other behavior-based
cybersecurity solutions. This framework was based on an extensive analysis of device be-
havior fingerprinting and existing cybersecurity solutions, ensuring a comprehensive under-
standing of the necessary components and processes. The designed framework facilitated
seamless integration, allowing for easy sharing and utilization of device fingerprints and
behavior profiles across different security solutions. To achieve this, the framework was
designed to be highly modular and scalable, allowing for easy integration with a variety
of behavior-based cybersecurity solutions. The identification framework could work with
various security systems, including intrusion detection systems, security information and
event management solutions, and advanced threat protection tools. It could enhance their
effectiveness and add an extra layer of security. To validate the framework suitability,
extensive simulations, and real-world tests were conducted, evaluating its functionality in
diverse scenarios and against various threat models. The real-world validation was per-
formed considering an IoBT scenario based on the ElectroSense platform [39]. Then, a
kernel event and syscall monitoring solution was integrated together with the individual
identification solution to provide a complete security approach for the platform. The results
of these evaluations confirmed the framework effectiveness, demonstrating its capability to
integrate individual device identification with other behavior-based cybersecurity solutions
and enhance the security posture of the network. This work solved RQ4 and Objective 5,
available in the thesis’s fourth chapter (SpecForce: A Framework to Secure IoT Spectrum
Sensors in the Internet of Battlefield Things (Article 4–IEEE_COMMAG)).

The next work done in the PhD Thesis, presented in the fifth chapter of this document
(Adversarial attacks and defenses on ML- and hardware-based IoT device fingerprinting
and identification (Article 5–FGCS)) and aligned with the fifth and sixth research questions
(Objectives 6, 7, and 8), tackled the challenge of security threats. It focused on finding
the best ML/DL technique for identification and then enhancing its resilience for reliable
hardware behavior-based individual device identification. This involved a thorough analysis
of potential adversarial attacks, emphasizing understanding the nature and impact of these
sophisticated attacks. The presented threat model addresses context- and ML/DL-focused
adversarial attacks, ensuring that the identification models remain reliable and secure
even in the face of sophisticated threats. The impact of the attacks proposed in the
literature was verified, demonstrating the solution vulnerability to adversarial attacks.
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Then, countermeasures and mitigation strategies were formulated and implemented to
fortify the identification models against adversarial manipulations. Adversarial training
and knowledge distillation techniques [40] were incorporated to enhance model resilience
against adversarial attacks.

The last work of this compendium worked on the seventh research question (RQ7) and
Objective 9 (Single-board Device Individual Authentication based on Hardware Perfor-
mance and Autoencoder Transformer Models (Article 6–COSE)). It dealt with the authen-
tication problem instead of with identification. As explained in the Introduction, the main
difference between these problems is that for authentication, only data from the device
being authenticated can be employed in the training process and a higher granularity is
necessary in the data processing. This fact makes much more difficult the authentication
problem, as the distribution of hardware performance data on devices from the same model
usually overlaps in a great proportion. The methodology followed to solve this problem
involved time series processing to train Transformer-based autoencoder models [41], with
each model tailored to a specific device. The data collection and preprocessing were similar
to the one applied in the identification-focused works, only varying the size of the employed
time window. Then, attention-based transformer models were designed to function as out-
lier detection mechanisms, identifying any deviations from the expected hardware behavior
that would indicate an unauthorized device. This work placed a strong emphasis on the
practical application of their methodology in real-world scenarios. Therefore, it conducted
extensive testing and validation to ensure that the approach was not only theoretically
sound but also effective in practice.

This thesis creates a holistic storyline, addressing the critical aspects of device behavior
fingerprinting from foundational knowledge and practical identification techniques to data
collection, integration with broader security solutions, and resilience against adversarial
attacks. Finally, the authentication problem is also explored using modern transformer-
based approaches. This comprehensive approach ensures a thorough understanding and
robust application of device behavior fingerprinting in the realm of cybersecurity. This
methodology allowed for meeting the objectives defined in the thesis, previously presented
in Section II.

IV Results

The first publication of the PhD Thesis, presented in (Article 1–IEEE_COMST), offered a
comprehensive study on device behavior fingerprinting, providing an extensive analysis and
synthesis of solutions applied in the realm of cybersecurity, along with valuable insights and
findings. The results highlighted a broad spectrum of data sources, techniques, application
scenarios, and datasets prevalent in the current literature, underlining the multifaceted
nature of device behavior fingerprinting. One of the key findings revolves around the
diversity of data sources used for device behavior fingerprinting. The results indicated
that a wide variety of data types are employed, ranging from network traffic and system
logs to hardware-specific attributes. This diversity underscores the versatility of device
fingerprinting solutions, demonstrating their applicability across different layers of the
system and network architecture.

In terms of fingerprinting techniques, the study revealed a rich landscape of method-
ologies, each with its unique strengths and capabilities. The results show that there is
no one-size-fits-all solution, with different techniques catering to specific requirements and
scenarios. This variety ensures that practitioners and researchers have a plethora of options
to choose from, enabling them to tailor their device fingerprinting solutions to meet the
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specific needs of their application. When it comes to application scenarios, the document
outlined a wide range of contexts in which device behavior fingerprinting is employed.
From enhancing network security and detecting unauthorized devices, to facilitating de-
vice authentication and integrity verification, the applications are vast and varied. This
highlighted the crucial role that device behavior fingerprinting plays in bolstering cyberse-
curity measures, providing an additional layer of security and trust in digital environments.
The examination of datasets revealed that while there are numerous datasets available for
research and development purposes, there is still a need for more comprehensive and stan-
dardized datasets. The results point out that the existing datasets vary significantly in
terms of size, quality, and relevance, indicating a gap that needs to be addressed to further
advance the field. The availability of high-quality, standardized datasets is paramount for
the validation and benchmarking of device fingerprinting solutions, ensuring their reliabil-
ity and effectiveness in real-world scenarios.

In the last section of the document, a profound and insightful analysis was presented,
encapsulating the lessons learned, identifying prevailing trends, and highlighting the chal-
lenges faced in the domain of device behavior fingerprinting within cybersecurity. This
section serves as a critical reflection on the current state of the field, offering guidance for
future research and practical implementations. One of the main challenges identified is as-
sociated with the lack of solutions dealing with individual device identification, compared
to other topics such as behavior-based malware detection or network security. Moreover,
there is a lack of datasets available to enable the design of individual identification solu-
tions. Another important challenge is related to the attacks directly focused on disrupting
the effectiveness of behavior-based security solutions. Besides, an obvious imbalance be-
tween solutions for identification and authentication of devices is detected, possibly because
it is a more complex problem to solve.

Following the main challenges found in the literature, the second publication (Article 2–
JNCA) provided a detailed exploration and analysis of the steps required to uniquely identify
IoT devices based on their hardware behavior, with a particular emphasis on leveraging
ML and DL techniques. The results gleaned from this investigation offer valuable insights
into the intricacies of device fingerprinting and the practicalities of implementing such
methodologies in real-world scenarios.

The research identified essential properties for single-board device identification, includ-
ing uniqueness, stability, diversity, scalability, efficiency, robustness, and security. A novel
methodology was then introduced, relying on behavioral fingerprinting to identify identi-
cal single-board devices while meeting the aforementioned properties. This methodology
utilizes the different built-in components of the system, along with ML/DL techniques, to
compare the internal behavior of devices and detect variations that occurred during the
manufacturing processes. A key outcome of the study was the identification and validation
of specific hardware attributes that can be used as reliable indicators for device fingerprint-
ing. These attributes, when analyzed and processed correctly, have been shown to provide
a unique signature for each device, facilitating accurate and efficient identification. The re-
sults underscore the importance of selecting the right combination of hardware attributes,
as this choice significantly impacts the effectiveness of the fingerprinting process.

The document also highlighted the critical role of hardware isolation in the device fin-
gerprinting workflow. The results demonstrated that careful handling and preparation of
the hardware attributes are paramount, as this ensures the integrity of the fingerprinting
process and enhances the accuracy of device identification. Besides, the application of var-
ious data preprocessing techniques, including normalization and dimensionality reduction,
has been shown to contribute positively to the outcome of the fingerprinting process.
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The integration of ML and DL techniques into the device fingerprinting process has
also been shown to introduce an element of adaptability and learning, enabling the system
to evolve and improve over time. Deep learning techniques, including various configu-
rations of neural networks, were explored for their ability to learn and model the device
fingerprints directly from raw hardware data. ML and DL classifiers were among the archi-
tectures tested, chosen for their prowess in handling sequential and time-series data, which
is prevalent in hardware behavior information. Additionally, the document addressed the
challenge of model overfitting, especially pertinent when employing complex models like
deep neural networks. Strategies such as cross-validation and regularization were applied,
ensuring that the models generalize well to unseen data and maintain high performance
when deployed in real-world settings. The methodology is validated in a real environment,
consisting of 15 identical Raspberry Pi 4 Model B and 10 Raspberry Pi 3 Model B+ devices
whose CPU and GPU performance was analyzed. The results showcase a 91.9% average
True Positive Rate (TPR) with an XGBoost model, achieving identification for all devices
by setting a 50% threshold in the evaluation process. Furthermore, the proposed method-
ology was engaged in a critical discussion, comparing the proposed solution with related
work, highlighting the fingerprint properties not met by other solutions, and providing
valuable lessons learned and limitations of the presented methodology.

The main result in the third publication of the thesis (Article 3–IoT) was the devel-
opment of a low-level hardware benchmarking application tailored for SBCs, addressing
the need for lower-level benchmarking applications and datasets in the realm of IoT iden-
tification. The benchmark was named LwHBench [42] and focuses on measuring the per-
formance of CPU, GPU, Memory, and Storage, while taking into account the component
constraints inherent in SBCs. The application has been specifically implemented for Rasp-
berry Pi devices. It was run for 100 days on a set of 45 devices to generate an extensive
dataset containing 2386126 vectors in +4GB of data. This dataset paves the way for the
application of AI techniques in scenarios where performance data can aid in the device
management process. To showcase the inter-scenario capability of the dataset, the docu-
ment also presented a series of AI-enabled use cases related to device identification and
the impact of context on performance. In a practical setup, the benchmark application
was adapted and applied to a scenario involving three RockPro64 devices, demonstrating
its versatility and applicability in real-world settings.

In the fourth publication of the thesis (Article 4–IEEE_COMMAG), the research delves
into the emerging and highly dynamic field of the Internet of Battlefield Things (IoBT).
It focused particularly on the pivotal role of wireless communications within this sphere.
In this intricate battlefield scenario, a myriad of devices, ranging from soldiers to diverse
military equipment, interact in real time, exchanging information wirelessly and forming
a complex network of interconnected entities. The proposed scenario delves into three
primary use cases: IoT device identification, malware detection, and Spectrum Sensing
Data Falsification (SSDF) attack detection.

To solve these use cases, an IoT behavior fingerprinting framework was introduced,
namely SpecForce, which was meticulously designed to enhance the security of IoBT spec-
trum sensors, crucial components in monitoring the frequency spectrum, transmitting over
unoccupied bands, intercepting enemy transmissions, and decoding valuable information.
In this real-world scenario, individual device identification is essential to avoid possible
attacks based on identity manipulations. SpecForce stands out as a robust solution, em-
ploying device behavioral fingerprinting alongside ML/DL techniques. The framework was
adept at considering heterogeneous data sources, enhancing its capability to detect and
mitigate a wide array of cyber threats effectively. The emphasis was placed on ensuring
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the integrity and reliability of communications within the battlefield scenario, a critical as-
pect considering the spectrum scarcity and the burgeoning number of IoBT devices. The
framework included an AI-based cybersecurity module that employs ML/DL classification
algorithms for identifying different IoBT spectrum sensors based on RPi devices. The doc-
ument provides a comprehensive analysis of various ML/DL models for classification. The
results indicate that Random Forest and XGBoost are the best-performing models, achiev-
ing over 91% TPR. The document also discusses a use case demonstrating the capability
of the system to uniquely identify 25 IoBT spectrum sensors, addressing identity-focused
attacks and enhancing security.

As commented before, SpecForce was equipped with other cybersecurity approaches
using kernel event and syscall behavior monitoring to detect higher-level cyberattacks. In
the context of SSDF attack detection, the framework allows the syscall monitoring of IoBT
spectrum sensors, aiming to detect various SSDF attacks. System calls are processed to
generate feature vectors that model the spectrum sensing activities, with anomaly detection
algorithms employed to distinguish between normal and malicious behaviors. The results
showcase a high performance in recognizing normal behavior, with over 99% True Negative
Rate (TNR), and a commendable TPR of over 92% for SSDF attack detection. Besides,
regarding heterogeneous malware detection (botnets, backdoors, etc.), high performance
was achieved by monitoring kernel events combined with ML/DL anomaly detection, with
a 90% TPR and a 96% TNR.

In the context of adversarial attacks, the next publication of the PhD Thesis (Article 5–
FGCS) shed light on the potential vulnerabilities and threats that can compromise the
integrity of device fingerprinting and identification mechanisms. It discusses various attack
vectors, illustrating how malicious entities could manipulate or bypass hardware-based
identification mechanisms to achieve their nefarious goals. The paper underscores the
need for comprehensive defense strategies capable of mitigating the risks associated with
adversarial attacks, ensuring the robustness of device identification processes. The first
main result of this work was the improvement in the identification results achieved in
previous works. Using time series approaches combined with DL models, identification
results were increased to +0.96 average TPR with a minimum 0.80 TPR in the 45 RPi
devices used for validation by leveraging an LSTM+1D-CNN combined model. Regarding
adversarial attacks, both context- and ML/DL-focused attacks are applied to evaluate the
robustness of the device identification model. A specific mention is made of a temperature-
based context attack, which, interestingly, was found to be ineffective in disrupting the
device identification process, as the hardware isolation during data collection was already
considering context impact mitigation. However, the document does acknowledge the
success of certain state-of-the-art ML/DL evasion attacks, such as BIM, MIM, and JSMA.

On the defense side, the document provides an exhaustive exploration of various strate-
gies and methodologies aimed at protecting IoT devices from adversarial threats. It delves
into ML and context-based approaches, evaluating their effectiveness in enhancing the
security and reliability of device fingerprinting and identification. Context-based attacks
focused on temperature are ineffective due to the hardware stability and isolation measures
taken during data collection. Regarding defenses on ML/DL evasion attacks, knowledge
distillation and adversarial training are applied to reduce the impact of the attacks. The
results highlight the critical role of these defense mechanisms in maintaining the integrity
of IoT ecosystems, ensuring that devices are accurately identified and malicious entities
are thwarted. In terms of performance, the success ratio of attacks was reduced from 0.88
to 0.17 in the worst-case scenario without causing a substantial degradation in perfor-
mance. Finally, various security metrics are used to assess the resilience of neural networks
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against adversarial perturbations and input variations. Metrics such as CLEVER score,
Loss sensitivity, and Empirical robustness [40] are discussed, providing insights into how
the robustness of ML models can be quantified and evaluated.

The last publication of the PhD thesis (Article 6–COSE) focused on the individual au-
thentication problem. It proposed an authentication framework that utilized hardware
performance data and transformer-based autoencoder models. The framework design is
supported by a threat model that outlines the security challenges encountered in im-
plementing hardware-based authentication in IoT contexts. As in previous works, key
hardware components, such as CPU, GPU, RAM, and storage, were monitored for finger-
print data collection. These fingerprints were then utilized as time series data, applying
time windows from 10 to 100 values. The generated time series are then used to train
transformer models for outlier detection, tailored to each individual device, thereby aim-
ing to represent and authenticate it accurately. The framework effectiveness was further
demonstrated through its application in a spectrum crowdsensing system using Raspberry
Pi devices. Transformer models were compared with LSTM and 1D-CNN approaches in
terms of performance. Here, in a series of rigorous experiments involving 45 devices for
validation, each device transformer model proved capable of accurately authenticating it.
In contrast, other approaches were not capable of uniquely authenticating all the devices.
The approach achieved an impressive average TPR of 0.74±0.13 and maintained an average
maximum FPR of 0.06±0.09, underscoring its potential to significantly enhance authenti-
cation, security, and trustworthiness in crowdsensing applications. Moreover, the resource
usage of the different approaches tested was also analyzed, confirming one of the main
drawbacks of transformer models; this was the ML/DL technique using the most resources
in terms of time and memory.

V Conclusions and future work

This thesis provides an in-depth and comprehensive examination of the field of device
behavior fingerprinting, with a specific lens focused on its application within the realm of
cybersecurity, and a nuanced emphasis on single-board and IoT device identification and
authentication. The research begins with an extensive and systematic review of the current
landscape, capturing the breadth and depth of device behavior fingerprinting solutions that
have been explored and implemented within the cybersecurity domain. This initial phase of
exploration serves to lay a robust foundation of knowledge, unraveling the complexities of
various data sources, fingerprinting techniques, application scenarios, and the datasets that
are prevalent within the academic and practical spheres of this field. From this exploration,
a novel set of literature lessons and trends is derived, giving a holistic view of previous
works. However, the main novelty from a research perspective is the list of challenges
identified in the literature, which were not defined before and paved the way for future
research.

As the storyline progresses, the spotlight shifts to the practical implementation of device
identification, with the proposal of a clear and detailed methodology outlined for uniquely
identifying IoT devices. This process is intricately tied to the capabilities afforded by ML
and DL techniques. These advanced computational tools can be harnessed to decipher the
subtle nuances of hardware behavior, ensuring a high level of authenticity and integrity for
devices embedded within a network. The importance of this process cannot be overstated,
as it plays a pivotal role in safeguarding the security and reliability of interconnected
devices, forming a critical component of the broader cybersecurity infrastructure. To
highlight this importance, the presented methodology is compared to other works in the
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field, where no methodological set of steps was followed. Previous solutions were not able
to perform full identification in the real device scenario used for validation. Therefore, the
methodology becomes the state-of-the-art procedure for developing a functional individual
identification solution.

Building upon the established identification methodology, the narrative delves deeper
into the critical aspect of data collection, presenting a comprehensive approach for the
systematic acquisition of hardware performance data. Generating the datasets required
for later behavior fingerprinting is essential. These datasets help ensure that the identifi-
cation models are trained and validated on data that is both extensive and accurate. The
meticulous attention to detail in this process ensures the reliability of the data, setting a
high standard for the quality of information used in device behavior fingerprinting. As a
result of the proposed tool for data collection, an exhaustive dataset is generated to be
applied in the following steps of the thesis. This dataset is published to be employed by
the research community in the field, together with the benchmark application employed to
generate the data. This is one of the first public datasets of hardware performance data
that is focused on the identification problem.

With a solid foundation of data in place, the exploration then navigates toward the
integration of individual device identification within the larger ecosystem of behavior-
based cybersecurity solutions. This integration is paramount, as it ensures that the device
identification procedures do not operate in isolation but are seamlessly linked with other
general security frameworks. For this integration, the focus is strategically placed on the
Internet of Battlefield Things. A real-world scenario is employed to integrate the hardware-
based identification solution with higher-level behavior monitoring for the detection of
malware and spectrum-sensing data falsification attacks. Specifically, the unified approach
monitors hardware, kernel events, and system calls to provide a unified security solution
based on behavior. This holistic approach enhances the environment resilience, fortifying
its defenses against a myriad of cyber threats and vulnerabilities, and ensuring a robust
and secure digital environment. The unified framework demonstrates experimentally its
capabilities to detect different malware samples and spectrum data-focused attacks, as
well as perform individual identification of the sensors deployed. This is, to the best of our
knowledge, the first framework combining these cybersecurity capabilities together.

As the work reaches its culmination, the focus turns to the security of the device
identification models themselves, specifically addressing the challenges posed by adver-
sarial attacks. The landscape of adversarial attacks is analyzed, particularly focusing on
context-aware and ML/DL-centric threats that pose significant risks to the integrity of
device identification methodologies. Then, the focus delves into strategies and methodolo-
gies designed to enhance the resilience of hardware behavior-based identification models. A
particular emphasis is placed on counteracting sophisticated adversarial threats, including
context-based and ML/DL-focused attacks. Context-based attacks are ineffective against
the solution, but evasion attacks targeting the identification models achieve high success
rates. Therefore, defense techniques based on adversarial training and knowledge distilla-
tion are applied. This ensures that the device identification methodologies remain reliable,
secure, and effective, even in the face of evolving and complex cyber threats. This is one
of the first works demonstrating experimentally the effectiveness of adversarial attacks on
ML models for IoT device identification, and also of state-of-the-art defense methods.

Finally, the research explores the more complex problem of individual device authen-
tication, where only data from one device can be leveraged for model generation. The
methodology applied for identification is tweaked for its application in authentication.
The main difference is the change of the classifier model for an anomaly detection model
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per device. However, more powerful ML/DL models are necessary to solve this problem
as data distributions overlap between devices from the same model. To solve this issue,
transformer models are employed. Using large time windows for data processing (100
values), the transformer-based approach improves the results achieved by previous state-
of-the-art models such as LSTM, 1D-CNN, and their combination. In contrast, higher
training time and memory are employed in the model generation process. This outcome
confirms the effectiveness of the transformer architecture in a novel area. Unlike previous
model architectures in existing literature, it successfully addresses the issue of individu-
ally authenticating IoT devices based on their hardware performance in the experimental
scenario studied.

Looking ahead, there is a vast horizon of opportunities for future work building upon
the foundations laid by this thesis in the domain of device behavior fingerprinting. The
first iteration of future work could delve into the adversarial attack evaluation over the
unsupervised transformer models employed to solve the individual identification problem,
and the consequent application of defense techniques. These results will close the work on
the authentication topic in a similar manner to the methodology applied for the individual
identification problem.

Another promising avenue is expanding the scope of device behavior fingerprinting to
encompass a broader array of devices and contexts. The current work has predominantly
focused on single-board and IoT devices. However, the principles and methodologies de-
veloped could be adapted and applied to other types of devices and networks, such as
industrial control systems, automotive systems, and smart home devices. Future research
could explore the nuances and specific requirements of these different contexts, tailoring
the fingerprinting techniques to suit the unique characteristics of each device category and
usage scenario. One of the pivotal areas highlighted for future exploration is the contin-
ual quest for new and diverse data sources. The field stands to benefit significantly from
broadening the scope of data collection, capturing a wider array of device behaviors, and
ensuring a richer and more comprehensive dataset for analysis. This endeavor is not just
limited to increasing the quantity of data but also emphasizes the importance of improving
the quality and reliability of the data collected. Future work in this area could explore
advanced data collection methodologies, innovative sensor technologies, and novel data
preprocessing techniques, all aimed at ensuring that the data used for device behavior
fingerprinting is of the highest caliber.

Building upon the theme of data, there is a clear call for the development and re-
finement of fingerprinting techniques. The future holds potential for the exploration of
new algorithms, ML models, and DL architectures, each offering unique capabilities and
advantages for device identification. Federated Learning (FL), and more concretely decen-
tralized FL, is one of these promising areas worth exploring in the following years. The
continuous evolution of computational power and ML/DL technologies opens up exciting
possibilities for creating more sophisticated and accurate device behavior fingerprinting
models, capable of discerning even the most subtle nuances in device behavior.

Addressing the challenge of adversarial attacks, there is a pressing need for the develop-
ment of robust countermeasures and mitigation strategies. Future work in this area could
explore innovative approaches to enhancing the resilience of device behavior fingerprint-
ing models, with a specific focus on countering sophisticated adversarial threats, including
context-based and ML/DL-focused attacks. This involves not only fortifying the identifica-
tion models but also developing comprehensive threat detection and response mechanisms,
ensuring the long-term reliability and security of device identification methodologies.

Another critical area for future work lies in enhancing the adaptability of device be-
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havior fingerprinting models. With the rapid pace of technological advancement, devices
are constantly evolving, and their behavior patterns may change over time due to software
updates, hardware modifications, or changes in usage patterns. Future research could focus
on developing fingerprinting models that are capable of adapting to these changes, ensuring
that they remain accurate and reliable over the device lifecycle. This could involve the
integration of online learning techniques, continual learning approaches, or transfer learn-
ing methodologies to enable the models to update and refine their fingerprinting profiles
in response to observed changes in device behavior.

Finally, there is significant potential for future work in the integration of device be-
havior fingerprinting solutions with other cybersecurity tools and frameworks. This thesis
has laid the groundwork for such integration, demonstrating the potential benefits of com-
bining device behavior fingerprinting with other behavior-based security solutions. Future
research could build upon this, exploring ways to further streamline the integration pro-
cess, enhance interoperability, and maximize the synergies between different security tools.
This could lead to the creation of more holistic and resilient cybersecurity frameworks,
providing comprehensive protection against a diverse range of cyber threats.
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Resumen

I Introducción y motivación

Para 2025, se espera que casi 64 mil millones de dispositivos de Internet de las Cosas
(IoT) estén conectados en diversos entornos de vanguardia, como Ciudades Inteligentes,
Industria 4.0 y crowdsensing [1]. El crecimiento del IoT promete no solo mejorar la cali-
dad y accesibilidad de los servicios, sino también revolucionar la experiencia del usuario,
ya que fomenta ecosistemas inteligentes que reducen significativamente la intervención hu-
mana, agilizando así los procesos, reduciendo costos y mitigando errores. Sin embargo,
los objetivos únicos de estos entornos también aumentan la complejidad de optimizar el
rendimiento de dispositivos y servicios.

Desde una perspectiva de escenario, la vasta gama de dispositivos IoT utilizados hoy en
día incluye dispositivos de placa única (SBC por su nombre en inglés) como Raspberry Pi
(RPi), que han ganado popularidad debido a su flexibilidad, asequibilidad, amplio soporte
y periféricos disponibles [2]. Sin embargo, las limitaciones de conectividad y recursos
de las SBC y los dispositivos IoT generan numerosas preocupaciones de ciberseguridad
para diversas plataformas [3]. Un problema significativo es la presencia de dispositivos
no autorizados con configuraciones de hardware y software idénticas a las de los nodos
autorizados, lanzando ataques que impactan áreas de aplicación como Industria 4.0 [4],
teléfonos inteligentes [5] o Internet de las Cosas del Campo de Batalla (IoBT) [6]. Estos
dispositivos maliciosos pueden estar presentes como consecuencia de varias amenazas de
ciberseguridad [7], incluyendo i) suplantación de dispositivos, donde un atacante reemplaza
un dispositivo legítimo por uno malicioso usando la misma identidad; ii) despliegue no
autorizado de dispositivos, que implica la instalación de un nuevo dispositivo con una
identidad no registrada; y iii) ataque Sybil, donde un dispositivo malicioso utiliza múltiples
identidades para simular numerosos dispositivos. En consecuencia, otras amenazas como
la filtración de información sensible, envenenamiento de datos y escalada de privilegios y
movimientos laterales pueden surgir de dispositivos suplantados.

Para resolver estos problemas emergentes de ciberseguridad, la ciencia de datos del com-
portamiento se ha expandido desde el estudio de comportamientos humanos [8] hacia la
modelización de comportamientos de dispositivos [9], con un enfoque en la creación de pa-
trones de comportamiento de dispositivos (huellas digitales) para optimizar el rendimiento
y detectar problemas potenciales tempranamente [10]. Dos escenarios primarios de apli-
cación de IoT para la construcción de huellas digitales de dispositivos son i) identificación
y autenticación de dispositivos en diferentes niveles de granularidad [11], y ii) detección de
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ciberataques, malfuncionamiento o comportamiento indebido [12, 13]. Diversos estudios
han aplicado el fingerprinting de dispositivos a ambos escenarios [14, 15]. En el escenario
de identificación, la ciencia de datos del comportamiento ha mejorado significativamente
las capacidades de identificación de dispositivos, superando las limitaciones asociadas con
metodologías convencionales que predominantemente dependen del uso de nombres, iden-
tificadores, etiquetas o tags para el reconocimiento de dispositivos [16]. Una limitación
crítica de las estrategias tradicionales es su susceptibilidad a alteraciones y duplicaciones.
Estas técnicas convencionales a menudo carecen del dinamismo para adaptarse al paisaje
rápidamente evolutivo de los escenarios IoT, donde muchos dispositivos se despliegan con
alta movilidad. Estos problemas son especialmente relevantes en escenarios con un aumento
exponencial en la cantidad de dispositivos, como en industrias inteligentes o la agricultura.
Por lo tanto, la identificación de dispositivos basada en huellas digitales de comportamiento
ha mejorado significativamente las soluciones tradicionales al enfocarse en niveles de gran-
ularidad de tipo [11], modelo [17], e individual [18]. Por otro lado, la detección de mal
comportamiento o malfuncionamiento debido a problemas de ciberseguridad ha visto el
surgimiento del fingerprinting de dispositivos como una solución prometedora. Numerosos
trabajos crean huellas digitales de comportamiento "normal" para detectar cambios cau-
sados por problemas como ciberataques, ejecución de malware o malfuncionamiento de
dispositivos [12, 19].

En el nivel de granularidad de identificación individual, el fingerprinting (generación
de huellas) del comportamiento del hardware se destaca como una vía prometedora para
identificar de manera única dispositivos idénticos, una necesidad en el paisaje tecnológico
interconectado de hoy. A pesar de su potencial, este dominio todavía está en desarrollo,
caracterizado por desafíos abiertos y una falta de investigación dedicada específicamente
a la identificación de dispositivos de placa única idénticos [20]. La complejidad de esta
tarea se amplifica por las similitudes inherentes entre dichos dispositivos, lo que requiere
metodologías de identificación innovadoras y precisas. En el contexto más amplio, para dis-
positivos que no están limitados por componentes y recursos, la literatura existente aboga
por la adopción del fingerprinting del comportamiento del hardware [21]. Esta técnica es
fundamental para discernir pequeñas variaciones de rendimiento que son un subproducto
de imperfecciones de fabricación [22]. Al analizar meticulosamente estas sutiles diferen-
cias, el fingerprinting del comportamiento del hardware proporciona un nivel granular de
caracterización del dispositivo, abriendo el camino para una identificación precisa del dis-
positivo. Sin embargo, es importante distinguir entre identificación y autenticación en este
contexto. Mientras que la identificación implica reconocer un dispositivo de un conjunto
basado en sus características únicas, la autenticación va un paso más allá verificando la
legitimidad del dispositivo. La autenticación aborda la pregunta de si un dispositivo es
quien dice ser, ofreciendo una capa de seguridad que la mera identificación no proporciona.

El análisis del comportamiento del hardware para la identificación de dispositivos se
ha realizado parcialmente en la literatura pero sin seguir una metodología clara sobre los
pasos a realizar para lograr una solución exitosa [20]. Por lo tanto, existe una necesidad
de esta metodología específica, arraigada en la necesidad crítica de reforzar las medidas
de ciberseguridad en infraestructuras de red que incorporan dispositivos de ordenador de
placa única idénticos, como Raspberry Pi. El conjunto de estos dispositivos trabajando de
manera coordinada es lo que permite ofrecer servicios de IoT basados en crowdsourcing o
recolección/procesamiento de datos conjuntos. Estos dispositivos, a menudo desplegados
extensamente y en entornos donde los recursos son escasos, son vulnerables a una miríada
de amenazas de seguridad [23, 24] que afectan la fiabilidad de los servicios ofrecidos. Es-
tos van desde intentos de suplantación de dispositivos maliciosos hasta la introducción de
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dispositivos no autorizados en una red. Asegurar la capacidad de identificar y autenticar
dispositivos de manera precisa se convierte en un requisito no negociable, fundamental
para mantener la integridad y la resiliencia del servicio. Por lo tanto, un nivel de seguridad
consistente es esencial para tener servicios confiables. La implementación del fingerprinting
del comportamiento del hardware en estos contextos exige un nivel de precisión e inno-
vación que trasciende los métodos convencionales de identificación. Los desafíos provienen
de las sutiles diferencias entre dispositivos idénticos y las limitaciones impuestas por sus
recursos limitados [25]. Abordar estos desafíos requiere un esfuerzo de investigación con-
certado, dirigido a desentrañar las complejidades del fingerprinting del comportamiento
del hardware, seleccionar las características de rendimiento del hardware más prometedo-
ras, desarrollar algoritmos de identificación robustos y establecer mejores prácticas para la
aplicación práctica.

Además, tener una solución de identificación completa basada en hardware es crítico
para la seguridad de IoT. Sin embargo, en escenarios del mundo real, las soluciones de iden-
tificación individual no funcionan aisladas de otras aplicaciones de ciberseguridad. Deben
integrarse con otras soluciones de red y comportamiento que buscan cubrir problemas de
ciberseguridad heterogéneos, como el malware. En este contexto, la integración del fin-
gerprinting del comportamiento del hardware para dispositivos de placa única se convierte
en un componente estratégico de un framework de seguridad más amplio. Identificar y
verificar de manera única cada dispositivo permite una base sólida para la comunicación
segura y la integridad de los datos. Sin embargo, aún se requieren otras herramientas para
alcanzar un nivel de seguridad más completo. Este nivel de seguridad no se trata solo de
proteger la información; se trata de garantizar la efectividad operativa y el éxito de los
entornos IoT.

Para reforzar la efectividad del fingerprinting del comportamiento del hardware para
dispositivos de placa única idénticos, es imperativo identificar las fuentes de datos más rele-
vantes para resolver este problema. Luego, se requiere tener un punto de referencia integral
y un conjunto de datos bien curado [26]. Estos recursos sirven como herramientas críticas
en la verificación y validación de la metodología, asegurando su precisión, fiabilidad y apli-
cabilidad en escenarios del mundo real. Un punto de referencia preciso es necesario para
evaluar sistemáticamente el rendimiento de los dispositivos, proporcionando una medida
estandarizada que se puede usar para discernir las sutiles variaciones en el comportamiento
del hardware [27]. Esto se vuelve particularmente crucial al tratar con dispositivos idénti-
cos, donde las diferencias son mínimas pero significativas para una identificación precisa.
Sin embargo, no hay aplicaciones de benchmarking disponibles en la literatura para el
fingerprinting de comportamiento de hardware de bajo nivel [26]. Junto con un punto de
referencia robusto, un conjunto de datos rico juega un papel vital en el proceso. Actúa como
un repositorio de perfiles de comportamiento de dispositivos de hardware, capturando las
complejidades y características únicas de cada dispositivo. Este conjunto de datos se con-
vierte en un punto de referencia, ayudando en el entrenamiento de algoritmos y sirviendo
como un punto de referencia para la validación. La combinación de un punto de referencia
integral y un conjunto de datos detallado asegura un enfoque holístico para la identifi-
cación de dispositivos, fortaleciendo la metodología de fingerprinting del comportamiento
del hardware. La motivación para establecer herramientas de verificación tan rigurosas
surge de las necesidades cambiantes de los paradigmas de IoT y computación Edge, donde
los dispositivos están cada vez más interconectados y la integridad del entorno es primor-
dial. En estos escenarios, la capacidad de identificar y autenticar dispositivos con precisión
no es solo una medida de seguridad; es una necesidad para garantizar el funcionamiento
fluido de la red y la confiabilidad de los datos intercambiados. Al invertir en el desarrollo
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de puntos de referencia precisos y conjuntos de datos integrales, la metodología de finger-
printing del comportamiento del hardware puede empoderarse, mejorando su precisión y
fiabilidad. Esto, a su vez, allana el camino para un futuro donde dispositivos de placa
única idénticos puedan integrarse sin problemas en redes complejas, operando de manera
segura y eficiente, y contribuyendo a la solidez de la infraestructura digital.

Tras adquirir las huellas digitales, surge un dominio de investigación apasionante, cen-
trado en emplear técnicas óptimas para procesarlas y evaluarlas. Mientras que los métodos
estadísticos han mantenido una posición dominante en este campo durante décadas, la lle-
gada de la Inteligencia Artificial (IA), específicamente el Machine Learning (ML) y el Deep
Learning (DL), ha precipitado un cambio de paradigma, ganando mayor prominencia en
las soluciones que se están desarrollando y desplegando hoy en día [28]. La complejidad y
diversidad de los comportamientos de los dispositivos IoT requieren modelos de DL sofisti-
cados capaces de capturar patrones y variaciones intrincadas. Técnicas como las Redes
Neuronales Convolucionales (CNNs) se están adaptando para discernir relaciones espa-
ciales en huellas digitales de hardware [29], mientras que las Redes Neuronales Recurrentes
(RNNs), incluyendo su variante más sofisticada, las redes de Memoria a Corto y Largo
Plazo (LSTM), se están desplegando para el análisis de datos temporales, crucial para
comprender el comportamiento del dispositivo a lo largo del tiempo [17]. Los autoencoders
también han creado un nicho en este sector, permitiendo la reducción de la dimensionalidad
para datos de huellas digitales de gran volumen y la detección de anomalías mediante la
reconstrucción del comportamiento normal del dispositivo y destacando desviaciones [30].
Además, los avances recientes en Redes Neuronales de Grafos (GNNs) permiten la incor-
poración de datos topológicos, facilitando la modelización de relaciones complejas dentro
de redes de dispositivos IoT interconectados. Finalmente, los modelos basados en atención
como los transformers están logrando un éxito extraordinario en herramientas centradas
en el lenguaje, como ChatGPT [31], y también pueden aplicarse a otros datos de series
temporales. Sin embargo, la aplicabilidad de todas estas técnicas modernas está condi-
cionada por la falta de conjuntos de datos disponibles, ya que requieren la existencia de
conjuntos de datos exhaustivos capaces de entrenar los modelos requeridos [32]. Por lo
tanto, después de tener suficientes datos, el siguiente desafío es explorar los métodos de
ML/DL disponibles para encontrar cuál podría proporcionar el mejor rendimiento en la
identificación individual de dispositivos. Aquí, se pueden crear nuevas arquitecturas de
red para modelar mejor el comportamiento del dispositivo y mejorar las capacidades de
identificación y autenticación.

Además, una solución totalmente funcional y confiable debe considerar los posibles
problemas de seguridad intrínsecos a la identificación individual de dispositivos basada en
hardware [33]. Los ataques adversarios surgen como una de las principales amenazas dirigi-
das a soluciones de identificación en IoT. Estos ataques sofisticados presentan un desafío
formidable, ya que están específicamente diseñados para manipular o evadir los mecan-
ismos de seguridad existentes, lo que podría llevar a accesos no autorizados, violaciones
de datos y compromiso de la integridad de la red [34, 35]. Los ataques adversarios en el
contexto de la identificación de dispositivos de placa única explotan los mecanismos dis-
eñados para garantizar la autenticidad del dispositivo y la seguridad de la red. Al alterar
sutilmente el comportamiento del dispositivo o imitar las características de dispositivos
legítimos, los adversarios pueden engañar a los sistemas de identificación, lo que resulta en
la clasificación errónea o la aceptación falsa de dispositivos pícaros. Esto no solo socava
la confiabilidad de la red, sino que también abre la puerta a actividades maliciosas adi-
cionales, poniendo en peligro la confidencialidad, integridad y disponibilidad de los datos y
servicios. Profundizando en la naturaleza de estos ataques adversarios, hay una tendencia
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creciente en tácticas de evasión basadas en contexto y ML/DL. Los ataques basados en
contexto manipulan inteligentemente las condiciones ambientales o el contexto operativo
de los dispositivos, con el objetivo de distorsionar los datos utilizados para la identificación
y, por lo tanto, engañar al sistema [36]. Estos ataques son particularmente insidiosos, ya
que explotan la variabilidad natural en el comportamiento del dispositivo debido a cambios
en factores externos, haciéndolos más difíciles de detectar y contrarrestar. Por otro lado,
los ataques de evasión basados en ML/DL representan un asalto sofisticado y calculado a
los sistemas de identificación de dispositivos de placa única. Los adversarios que emplean
estas técnicas utilizan modelos avanzados de ML para aprender los patrones y característi-
cas de dispositivos legítimos. Armados con este conocimiento, crean muestras adversarias
que imitan de cerca a dispositivos auténticos, difuminando efectivamente las líneas en-
tre dispositivos legítimos y pícaros [37]. Estas muestras se utilizan luego para sondear y
engañar al sistema de identificación, llevando a clasificaciones erróneas y potencialmente
otorgando acceso no autorizado a la red. Estos ataques explotan las complejidades inher-
entes y variabilidades en el comportamiento del dispositivo y las capacidades avanzadas
de los modelos de ML/DL para engañar y comprometer la seguridad de la red. Abordar
estos desafíos requiere una estrategia de seguridad integral y adaptable capaz de anticipar,
detectar y mitigar la miríada de amenazas que representan los ataques adversarios.

Aparte de todo el trabajo por hacer en el contexto de identificación individual de dis-
positivos IoT, el problema de la autenticación es un desafío abierto por sí solo debido a sus
requisitos más complejos [38]. Aunque el fingerprinting del comportamiento del hardware
ofrece una base robusta para la identificación, extender este enfoque para incluir mecanis-
mos de autenticación es vital para garantizar un grado más alto de seguridad en sistemas
interconectados. Sin embargo, los dispositivos del mismo modelo pueden exhibir carac-
terísticas de comportamiento muy similares o incluso superpuestas debido a procesos de
producción estandarizados. Esta similitud en el comportamiento del hardware hace que sea
desafiante distinguir entre dispositivos legítimos y no autorizados basándose únicamente en
datos de comportamiento del hardware, ya que las distribuciones de datos se fusionan. Por
lo tanto, la autenticación requiere una granularidad de análisis de datos mucho más fina.
Aquí, los enfoques de procesamiento tradicionales y las técnicas de ML/DL no han logrado
resultados notables. Sin embargo, nuevos algoritmos de ML/DL con capacidades avan-
zadas de reconocimiento de patrones, como los transformers basados en atención, podrían
mejorar el rendimiento de la autenticación basada en el comportamiento del rendimiento
del hardware.

Como resumen de los desafíos abiertos, la literatura sugiere que, aunque el fingerprint-
ing del comportamiento del hardware presenta una solución prometedora, el campo aún es
incipiente, con brechas de investigación considerables en metodología y práctica para dis-
positivos de placa única. La identificación individual de estos dispositivos requiere técnicas
innovadoras para distinguir sutiles diferencias de fabricación, así como puntos de referencia
precisos y conjuntos de datos extensos para validar nuevos algoritmos. La evolución de la
IA, particularmente ML y DL, está cambiando el paradigma para procesar y evaluar huellas
digitales de dispositivos, y se requieren nuevas técnicas en esta área. Además, sigue siendo
una necesidad crítica la integración del fingerprinting del hardware con medidas de seguri-
dad de red más amplias para abordar varias amenazas de ciberseguridad. A continuación,
los ataques adversarios representan un riesgo formidable, aprovechando tácticas basadas
en contexto o modelos de ML/DL para crear muestras que imitan dispositivos legítimos,
lo que requiere una estrategia de seguridad robusta y adaptable que abarque la identifi-
cación y mitigación integral de tales amenazas. Finalmente, es vital explorar el problema
de la autenticación de dispositivos aprovechando soluciones de ML/DL más complejas.
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Las soluciones de autenticación tienen que generar patrones avanzados en la huella digital,
generando modelos únicos para cada dispositivo basados en sus características intrínsecas.

Basado en las consideraciones anteriores, esta Tesis Doctoral explora la viabilidad de
la identificación y autenticación de dispositivos individuales basada en el fingerprinting del
comportamiento del rendimiento del hardware. Investiga la definición de la metodología, su
aplicación en frameworks y herramientas reales, su integración en dispositivos y escenarios
del mundo real, y el análisis y mitigación de amenazas de seguridad asociadas. En este
sentido, varias preguntas de investigación surgieron de los desafíos anteriores, guiando el
proceso de investigación de esta Tesis Doctoral, y se presentan de la siguiente manera:

• RQ1: ¿Cuál es el estado actual de las soluciones de fingerprinting del comportamiento
de dispositivos aplicadas en la identificación individual de dispositivos y qué fuentes
de datos, técnicas, escenarios de aplicación y conjuntos de datos están presentes en
la literatura?

• RQ2: ¿Qué metodología se debe seguir para identificar de manera única dispositivos
IoT de manera escalable mientras se aprovecha el comportamiento del hardware y
las técnicas de ML/DL?

• RQ3: ¿Qué métricas de hardware se pueden recolectar extensivamente para medir
el rendimiento del hardware y generar los conjuntos de datos requeridos para el
fingerprinting del comportamiento posterior?

• RQ4: ¿Cómo se puede integrar la identificación individual de dispositivos con otras
soluciones de ciberseguridad basadas en comportamiento desplegadas en escenarios
del mundo real?

• RQ5: ¿Qué técnicas de ML/DL pueden lograr el mejor rendimiento para la identifi-
cación individual de dispositivos?

• RQ6: ¿Cómo se puede mejorar la resiliencia de los modelos de identificación indi-
vidual de dispositivos basados en el comportamiento del hardware frente a ataques
adversarios centrados en contexto y ML/DL?

• RQ7: ¿Pueden las técnicas de ML/DL basadas en atención, como los transformers,
permitir la identificación individual de dispositivos siguiendo un enfoque de detección
de anomalías? ¿Qué recursos se requieren?

II Objetivos

El objetivo principal de esta tesis doctoral es avanzar en el campo del fingerprinting del
comportamiento de dispositivos para mejorar la identificación y seguridad de los dispos-
itivos IoT, con un enfoque particular en computadoras de placa única y sistemas con
recursos limitados. La investigación tiene como objetivo desarrollar metodologías y frame-
works de trabajo novedosos para la identificación individual de dispositivos, aprovechando
las técnicas de ML y DL. Al examinar varios escenarios de aplicación, incluyendo Ciudades
Inteligentes, Industria 4.0 y el Internet de las Cosas del Campo de Batalla, la tesis tiene
como objetivo abordar las crecientes amenazas de ciberseguridad, como el despliegue no
autorizado de dispositivos, y otros problemas emergentes debido al crecimiento exponencial
de dispositivos interconectados en el mundo computacional basado en redes.

La tesis explora diferentes aspectos del fingerprinting del comportamiento de dispos-
itivos, incluyendo fuentes de datos, técnicas, escenarios de aplicación y conjuntos de
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datos. La investigación se centra en resolver los problemas únicos enfrentados al definir
metodologías para identificar computadoras de placa única idénticas basadas en el finger-
printing del comportamiento del hardware y ML. Algunos de estos problemas abiertos son
la disponibilidad de datos y la integración de la solución en escenarios del mundo real. Por
lo tanto, se exploran como parte de los objetivos de investigación. La investigación tam-
bién investiga ataques adversarios y defensas en el fingerprinting de IoT, con el objetivo
de desarrollar arquitecturas resilientes. Por último, el trabajo explora el problema de la
autenticación, donde cada dispositivo debe ser reconocido sin considerar a otros y, por lo
tanto, son necesarios modelos de ML más complejos. A partir del objetivo de cubrir los
aspectos anteriores, se derivan varios objetivos específicos como se presenta a continuación,
indicando las preguntas de investigación relacionadas con ellos:

O.1. Analizar el estado actual del arte respecto al fingerprinting del comportamiento de
dispositivos para la identificación individual a través de una revisión completa, análi-
sis y comparación de fuentes de datos, técnicas, aplicaciones y conjuntos de datos
para guiar investigaciones y soluciones futuras (RQ1).

O.2. Identificar brechas existentes en la literatura en la identificación individual de dis-
positivos basada en el fingerprinting del comportamiento del hardware y los pasos
requeridos para cubrirlas (RQ1).

O.3. Abordar los desafíos de identificación de dispositivos de placa única con una metodología
novedosa aprovechando el fingerprinting del comportamiento del hardware, técnicas
de ML/DL y propiedades esenciales para mejorar la precisión y robustez (RQ2).

O.4. Desarrollar una solución de benchmarking de hardware de bajo nivel para Com-
putadoras de Placa Única para habilitar soluciones de IA basadas en Edge y gestión
versátil de dispositivos a través de extensos conjuntos de datos de rendimiento (RQ3).

O.5. Integrar la solución de identificación de dispositivos de placa única en un framework
de seguridad utilizando fingerprinting del comportamiento y técnicas de ML/DL para
detectar con precisión diversos ciberataques (RQ4).

O.6. Encontrar las mejores técnicas basadas en ML/DL para la identificación individual,
iterando sobre los conjuntos de datos disponibles para lograr el mejor rendimiento
(RQ5).

O.7. Investigar el impacto de ataques contextuales y centrados en ML/DL contra solu-
ciones de identificación de dispositivos basadas en el comportamiento del hardware
aprovechando modelos de ML/DL (RQ6).

O.8. Implementar y evaluar mecanismos de defensa para fortalecer la resiliencia de la solu-
ción contra ataques adversarios mientras se mantiene su rendimiento en el contexto
de la identificación de dispositivos basada en el comportamiento del hardware (RQ6).

O.9. Explorar el problema de la autenticación individual para verificar las capacidades de
modelos de ML/DL basados en atención para la detección de anomalías en los datos
de comportamiento del hardware (RQ7).

III Metodología

Esta Tesis Doctoral se llevó a cabo siguiendo un enfoque científico basado en el estudio
continuo del estado del arte y el análisis de los resultados obtenidos durante las distintas
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etapas de la investigación. Esta tesis se define como un conjunto de seis artículos publicados
en revistas de alto impacto indexadas en los Journal Citation Reports (JCR).

El primer paso fue resolver la RQ1 y proporcionar una visión completa del finger-
printing del comportamiento de dispositivos. Se realizó una amplia exploración de la
literatura existente para proporcionar una comprensión integral del estado actual de las
soluciones de fingerprinting del comportamiento de dispositivos en ciberseguridad. Esta
exploración abarcó una variedad de publicaciones académicas, que abarcan revistas y ac-
tas de conferencias, asegurando una amplia cobertura del tema. La literatura recopilada
fue meticulosamente categorizada y analizada en función de criterios específicos, como las
fuentes de datos utilizadas para el fingerprinting, las técnicas empleadas, los escenarios
de aplicación abordados y los conjuntos de datos utilizados. Esta categorización granu-
lar facilitó la identificación de tendencias prevalentes, métodos comúnmente utilizados y
posibles brechas dentro del cuerpo actual de conocimiento. El análisis proporcionó una
comprensión matizada de cómo se aplica el fingerprinting del comportamiento de disposi-
tivos en diferentes dominios de ciberseguridad, destacando su versatilidad y la variedad de
formas en que se puede implementar. Esta revisión extensa culminó en una visión holística
del campo, ofreciendo valiosas perspectivas y una base sólida para futuros esfuerzos de
investigación en el fingerprinting del comportamiento de dispositivos. Todas estas con-
sideraciones resultaron en la primera publicación de esta Tesis Doctoral, presentada en el
primer capítulo (Article 1–IEEE_COMST), que cubrió los dos primeros Objetivos de la tesis.

Después de realizar el análisis del estado del arte e identificar las brechas actuales en las
soluciones de identificación individual de IoT, el foco se trasladó a resolver la RQ2 y abordar
el Objetivo 3, que trata el problema de identificación individual de dispositivos IoT. Para
identificar de manera única dispositivos IoT basándose en su comportamiento de hardware
mientras se aprovechan las técnicas de ML y DL, se empleó un enfoque estructurado.
El proceso comenzó con la recopilación de un conjunto diverso y extenso de datos de
comportamiento de hardware de una variedad de modelos de RPi. Estos datos sirvieron
como base para el análisis posterior. Tras la fase de recopilación de datos, se aplicaron
técnicas de preprocesamiento para refinar y preparar los datos para los modelos de ML y
DL. Se seleccionaron y entrenaron varios modelos de ML/DL en los datos preprocesados,
lo que resultó en el desarrollo de algoritmos de identificación. El rendimiento de estos
algoritmos fue evaluado rigurosamente utilizando métricas comunes de clasificación de
ML/DL y dispositivos reales de SBC, asegurando su precisión y efectividad en escenarios
del mundo real. Posteriormente, se comparó la metodología con otros enfoques existentes
en la literatura, aunque no presentaron un conjunto estructurado de pasos para desarrollar
una solución de identificación. En esta comparación, se contrastó prácticamente la mejora
del rendimiento de la metodología. Este enfoque integral facilitó una metodología clara y
práctica para la identificación única de dispositivos IoT basada en su comportamiento de
hardware, aprovechando los últimos avances en ML y DL. La propuesta y validación de
la metodología de identificación de dispositivos individuales resultó en el segundo capítulo
(Article 2–JNCA).

En este punto, surgió una limitación en la línea de investigación con respecto a la
disponibilidad de datos y cómo recopilarlos. Como parte de esta Tesis Doctoral, se desar-
rolló una herramienta de benchmarking especializada y un conjunto de datos para abordar
el desafío de la recopilación extensiva de datos para medir el rendimiento del hardware y
generar los conjuntos de datos requeridos para el fingerprinting del comportamiento poste-
rior. Esta herramienta fue meticulosamente diseñada para medir y registrar el rendimiento
de varios componentes de hardware en una variedad de dispositivos IoT, asegurando un
proceso de recopilación de datos estandarizado y completo. La herramienta se ejecutó luego
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en algunos dispositivos SBC para extraer un conjunto de datos completo y realista. Los
datos recopilados fueron sometidos a rigurosos procesos de validación y control de calidad,
verificando su precisión y fiabilidad. Además de la recopilación de datos, se proporcionaron
pautas claras sobre cómo estructurar y almacenar los datos, facilitando su integración en
conjuntos de datos integrales. Este enfoque meticuloso aseguró que los datos recopilados
no solo fueran extensos, sino también de alta calidad, proporcionando una base sólida para
aplicaciones y análisis de fingerprinting del comportamiento posteriores. La aplicación de
benchmarking, junto con el conjunto de datos recopilados, están disponibles públicamente
para otros investigadores en el área. Este trabajo resultó en el tercer capítulo de esta tesis
(Article 3–IoT), respondiendo a la RQ3 y completando el Objetivo 4.

Una vez verificada la viabilidad de la identificación individual con el conjunto de datos
exhaustivos recopilados mediante la aplicación de benchmark, se desarrolló un framework
holístico e interoperable. Este framework buscó integrar la identificación individual de
dispositivos con otras soluciones de ciberseguridad basadas en comportamiento. Este
framework se basó en un análisis extenso del fingerprinting del comportamiento de dis-
positivos y soluciones de ciberseguridad existentes, asegurando una comprensión integral
de los componentes y procesos necesarios. El framework diseñado facilitó una integración
sin problemas, permitiendo compartir y utilizar fácilmente las huellas digitales y los per-
files de comportamiento de los dispositivos en diferentes soluciones de seguridad. Para
lograr esto, el framework fue diseñado para ser altamente modular y escalable, permi-
tiendo una fácil integración con una variedad de soluciones de ciberseguridad basadas en
el comportamiento. Ya fueran sistemas de detección de intrusiones, soluciones de gestión
de información y eventos de seguridad, o herramientas avanzadas de protección contra
amenazas, el framework era capaz de interactuar con ellas, mejorando sus capacidades y
proporcionando una capa adicional de seguridad. Esta interoperabilidad fue crucial para
mejorar la seguridad general de la red y asegurar la efectividad de las soluciones integradas.
Para validar el rendimiento del framework, se realizaron extensas simulaciones y pruebas
en el mundo real, evaluando su funcionalidad en diversos escenarios y contra varios mod-
elos de amenazas. La validación en el mundo real se realizó considerando un escenario de
Internet of Battlefield Things (IoBT) basado en la plataforma ElectroSense [39]. Luego, se
integró una solución de monitoreo de eventos de kernel y llamadas al sistema junto con la
solución de identificación individual para proporcionar un enfoque de seguridad completo
para la plataforma. Los resultados de estas evaluaciones confirmaron la efectividad del
framework, demostrando su capacidad para integrar la identificación individual de dispos-
itivos con otras soluciones de ciberseguridad basadas en el comportamiento y mejorar la
postura de seguridad de la red. Este trabajo resolvió RQ4 y el Objetivo 5, disponible en
el cuarto capítulo de la tesis (Article 4–IEEE_COMMAG).

El siguiente trabajo realizado en la Tesis Doctoral, presentado en el quinto capítulo
de este documento (Article 5–FGCS) y alineado con las quintas y sextas preguntas de
investigación (Objetivos 6, 7 y 8), abordó el desafío de las amenazas de seguridad. Se centró
en encontrar la mejor técnica de ML/DL para la identificación y luego mejorar su resiliencia
para una identificación fiable de dispositivos individuales basada en el comportamiento
del hardware. Esto involucró un análisis exhaustivo de los posibles ataques adversarios,
enfatizando la comprensión de la naturaleza y el impacto de estos sofisticados ataques. El
modelo de amenazas presentado aborda los ataques adversarios centrados en contexto y
ML/DL, asegurando que los modelos de identificación sigan siendo confiables y seguros
incluso frente a amenazas sofisticadas. Se verificó el impacto de los ataques propuestos en
la literatura, demostrando la vulnerabilidad de la solución a los ataques adversarios. Luego,
se formularon e implementaron contramedidas y estrategias de mitigación para fortalecer
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los modelos de identificación contra manipulaciones adversarias. Se incorporaron técnicas
de entrenamiento adversario y destilación de conocimiento [40] para mejorar la resiliencia
del modelo contra ataques adversarios.

El último trabajo de este compendio se enfocó en la séptima pregunta de investigación
(RQ7) y el Objetivo 9 (Article 6–COSE). Se ocupó del problema de autenticación en lugar
de la identificación. Como se explicó en la Introducción, la principal diferencia entre estos
problemas es que para la autenticación, solo se pueden emplear datos del dispositivo que
se está autenticando en el proceso de entrenamiento y se necesita una mayor granulari-
dad en el procesamiento de datos. Este hecho hace que el problema de autenticación sea
mucho más difícil, ya que la distribución de datos de rendimiento del hardware en dispos-
itivos del mismo modelo generalmente se superpone en gran proporción. La metodología
seguida para resolver este problema implicó el procesamiento de series temporales para
entrenar modelos autoencoder basados en transformers [41], con cada modelo adaptado
a un dispositivo específico. La recolección y preprocesamiento de datos fueron similares
a los aplicados en los trabajos centrados en identificación, variando solo el tamaño de la
ventana de tiempo empleada. Luego, se diseñaron modelos transformers basados en aten-
ción para funcionar como mecanismos de detección de anomalías, identificando cualquier
desviación del comportamiento del hardware esperado que indicaría un dispositivo no au-
torizado. Este trabajo puso un fuerte énfasis en la aplicación práctica de su metodología
en escenarios del mundo real. Por lo tanto, realizó pruebas y validaciones extensas para
asegurarse de que el enfoque no solo fuera teóricamente sólido sino también efectivo en la
práctica.

Esta tesis crea una narrativa holística, abordando los aspectos críticos del fingerprinting
del comportamiento de dispositivos desde el conocimiento fundamental y técnicas prácticas
de identificación hasta la recolección de datos, integración con soluciones de seguridad más
amplias y resiliencia frente a ataques adversarios. Finalmente, también se explora el prob-
lema de autenticación utilizando enfoques modernos basados en transformers. Este enfoque
integral asegura una comprensión profunda y una aplicación robusta del fingerprinting del
comportamiento de dispositivos en el ámbito de la ciberseguridad. Esta metodología per-
mitió cumplir con los objetivos definidos en la tesis, previamente presentados en la Sección
II.

IV Resultados

La primera publicación de la Tesis Doctoral, presentada en (Article 1–IEEE_COMST), ofreció
un estudio exhaustivo sobre el modelado del comportamiento de dispositivos, proporcio-
nando un análisis y síntesis amplios de soluciones aplicadas en el ámbito de la ciberseguri-
dad, junto con valiosos conocimientos y hallazgos. Los resultados destacaron un amplio
espectro de fuentes de datos, técnicas, escenarios de aplicación y conjuntos de datos preva-
lentes en la literatura actual, subrayando la naturaleza multifacética del modelado del
comportamiento de dispositivos. Uno de los hallazgos clave gira en torno a la diversidad
de fuentes de datos utilizadas para el modelado del comportamiento de dispositivos. Los
resultados indicaron que se emplea una amplia variedad de tipos de datos, que van desde el
tráfico de red y registros del sistema hasta atributos específicos del hardware. Esta diver-
sidad subraya la versatilidad de las soluciones de modelado de dispositivos, demostrando
su aplicabilidad en diferentes capas de la arquitectura del sistema y de la red.

En términos de técnicas de modelado, el estudio reveló un rico panorama de metodologías,
cada una con sus fortalezas y capacidades únicas. Los resultados muestran que no hay una
solución única para todos, con diferentes técnicas que atienden a requisitos y escenarios
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específicos. Esta variedad asegura que los profesionales e investigadores tengan una plétora
de opciones para elegir, permitiéndoles adaptar sus soluciones de modelado de dispositivos
para satisfacer las necesidades específicas de su aplicación. En cuanto a los escenarios de
aplicación, el documento esbozó una amplia gama de contextos en los que se emplea el
modelado del comportamiento de dispositivos. Desde mejorar la seguridad de la red y
detectar dispositivos no autorizados, hasta facilitar la autenticación de dispositivos y la
verificación de integridad, las aplicaciones son vastas y variadas. Esto destacó el papel
crucial que juega el modelado del comportamiento de dispositivos en el refuerzo de las
medidas de ciberseguridad, proporcionando una capa adicional de seguridad y confianza
en entornos digitales. El examen de los conjuntos de datos reveló que, aunque hay nu-
merosos conjuntos de datos disponibles para fines de investigación y desarrollo, todavía
se necesita más conjuntos de datos completos y estandarizados. Los resultados señalan
que los conjuntos de datos existentes varían significativamente en términos de tamaño,
calidad y relevancia, indicando una brecha que necesita ser abordada para avanzar aún
más en el campo. La disponibilidad de conjuntos de datos estandarizados de alta calidad
es fundamental para la validación y evaluación comparativa de soluciones de modelado de
dispositivos, asegurando su fiabilidad y efectividad en escenarios del mundo real.

En la última sección del documento, se presentó un análisis profundo y perspicaz, en-
capsulando las lecciones aprendidas, identificando tendencias predominantes y destacando
los desafíos enfrentados en el dominio del modelado del comportamiento de dispositivos
dentro de la ciberseguridad. Esta sección sirve como una reflexión crítica sobre el estado
actual del campo, ofreciendo orientación para futuras investigaciones e implementaciones
prácticas, incluyendo los próximos trabajos en esta tesis doctoral.

La segunda publicación (Article 2–JNCA) proporcionó una exploración y análisis detalla-
dos de los pasos necesarios para identificar de manera única dispositivos IoT basados en su
comportamiento de hardware, con un énfasis particular en el aprovechamiento de técnicas
de ML y DL. Los resultados obtenidos de esta investigación ofrecen valiosas perspectivas
sobre las complejidades del modelado de dispositivos y las prácticas de implementar tales
metodologías en escenarios del mundo real.

La investigación identificó propiedades esenciales para la identificación de dispositivos
de placa única, incluyendo la unicidad, estabilidad, diversidad, escalabilidad, eficiencia,
robustez y seguridad. Luego se introdujo una metodología novedosa, basada en el mode-
lado de comportamiento para identificar dispositivos de placa única idénticos mientras se
cumplen las propiedades mencionadas. Esta metodología utiliza los diferentes componentes
integrados del sistema, junto con técnicas de ML/DL, para comparar el comportamiento
interno de los dispositivos y detectar variaciones que ocurrieron durante los procesos de
fabricación. Un resultado clave del estudio fue la identificación y validación de atributos
de hardware específicos que pueden usarse como indicadores confiables para el modelado
de dispositivos. Estos atributos, cuando se analizan y procesan correctamente, han de-
mostrado proporcionar una firma única para cada dispositivo, facilitando una identificación
precisa y eficiente. Los resultados subrayan la importancia de seleccionar la combinación
adecuada de atributos de hardware, ya que esta elección impacta significativamente en la
efectividad del proceso de modelado.

El documento también destacó el papel crítico del aislamiento de hardware en el flujo
de trabajo del modelado de dispositivos. Los resultados demostraron que el manejo y la
preparación cuidadosos de los atributos de hardware son fundamentales, ya que esto ase-
gura la integridad del proceso de modelado y mejora la precisión de la identificación de
dispositivos. Además, se ha demostrado que la aplicación de varias técnicas de preproce-
samiento de datos, incluyendo la normalización y reducción de dimensionalidad, contribuye
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positivamente al resultado del proceso de modelado.
La integración de técnicas de ML y DL en el proceso de modelado de dispositivos tam-

bién ha demostrado introducir un elemento de adaptabilidad y aprendizaje, permitiendo
que el sistema evolucione y mejore con el tiempo. Se exploraron técnicas de Deep Learn-
ing, incluyendo varias configuraciones de redes neuronales, por su capacidad para aprender
y modelar las huellas de dispositivos directamente a partir de datos brutos de hardware.
Clasificadores de ML y DL estuvieron entre las arquitecturas probadas, elegidos por su
habilidad en manejar datos secuenciales y de series temporales, que son prevalentes en la
información de comportamiento del hardware. Además, el documento abordó el desafío
del sobreajuste del modelo, especialmente pertinente al emplear modelos complejos como
redes neuronales profundas. Se aplicaron estrategias como la validación cruzada y la reg-
ularización, asegurando que los modelos generalicen bien a datos no vistos y mantengan
un alto rendimiento cuando se desplieguen en entornos del mundo real. La metodología
se validó en un entorno real, consistiendo en 15 dispositivos Raspberry Pi 4 Model B y 10
Raspberry Pi 3 Model B+, cuyo rendimiento de CPU y GPU fue analizado. Los resultados
muestran una Tasa de Positivos Verdaderos (TPR) promedio del 91.9% con un modelo XG-
Boost, logrando la identificación de todos los dispositivos estableciendo un umbral del 50%
en el proceso de evaluación. Además, se entabló una discusión crítica sobre la metodología
propuesta, comparando la solución propuesta con trabajos relacionados, destacando las
propiedades de modelado no cumplidas por otras soluciones y proporcionando lecciones
valiosas aprendidas y limitaciones de la metodología presentada.

El principal resultado en la tercera publicación de la tesis (Article 3–IoT) fue el desar-
rollo de una aplicación de evaluación comparativa de hardware de bajo nivel adaptada para
SBCs, abordando la necesidad de aplicaciones y conjuntos de datos de evaluación compar-
ativa de bajo nivel en el ámbito de IoT. La evaluación comparativa se denominó LwHBench
y se centra en medir el rendimiento de CPU, GPU, Memoria y Almacenamiento, teniendo
en cuenta las limitaciones de componentes inherentes en los SBCs. La aplicación se im-
plementó específicamente para dispositivos Raspberry Pi. Se ejecutó durante 100 días en
un conjunto de 45 dispositivos para generar un extenso conjunto de datos que contiene
2386126 vectores en más de 4GB de datos. Este conjunto de datos allana el camino para la
aplicación de técnicas de AI en escenarios donde los datos de rendimiento pueden ayudar
en el proceso de gestión de dispositivos. Para mostrar la capacidad inter-escenario del
conjunto de datos, el documento también presentó una serie de casos de uso habilitados
por AI relacionados con la identificación de dispositivos y el impacto del contexto en el
rendimiento. En una configuración práctica, la aplicación de evaluación comparativa se
adaptó y aplicó a un escenario que involucra tres dispositivos RockPro64, demostrando su
versatilidad y aplicabilidad en entornos del mundo real.

En la cuarta publicación de la tesis (Article 4–IEEE_COMMAG), la investigación se aden-
tra en el campo emergente y altamente dinámico del Internet of Battlefield Things (IoBT).
Se centró particularmente en el papel crucial de las comunicaciones inalámbricas dentro
de este ámbito. En este intrincado escenario de batalla, una miríada de dispositivos, que
van desde soldados hasta diversos equipos militares, interactúan en tiempo real, inter-
cambiando información de manera inalámbrica y formando una red compleja de entidades
interconectadas. El escenario propuesto profundiza en tres casos de uso principales: iden-
tificación de dispositivos IoT, detección de malware y detección de ataques de Falsificación
de Datos de Detección de Espectro (SSDF, por sus siglas en inglés).

Para resolver estos casos de uso, se introdujo un framework de modelado de com-
portamiento IoT, denominado SpecForce, que fue meticulosamente diseñado para mejorar
la seguridad de los sensores de espectro IoBT, componentes cruciales en el monitoreo del
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espectro de frecuencias, la transmisión sobre bandas desocupadas, la intercepción de trans-
misiones enemigas y la decodificación de información valiosa. En este escenario del mundo
real, la identificación individual de dispositivos es esencial para evitar posibles ataques
basados en manipulaciones de identidad. SpecForce se destaca como una solución robusta,
empleando modelado de comportamiento de dispositivos junto con técnicas de ML/DL. El
framework fue hábil al considerar fuentes de datos heterogéneas, mejorando su capacidad
para detectar y mitigar eficazmente una amplia gama de amenazas cibernéticas. Se hizo
hincapié en garantizar la integridad y fiabilidad de las comunicaciones dentro del escenario
de batalla, un aspecto crítico considerando la escasez de espectro y el creciente número de
dispositivos IoBT. El framework incluyó un módulo de ciberseguridad basado en AI que
emplea algoritmos de clasificación de ML/DL para identificar diferentes sensores de espec-
tro IoBT basados en dispositivos RPi. El documento proporciona un análisis exhaustivo
de varios modelos de ML/DL para la clasificación. Los resultados indican que Random
Forest y XGBoost son los modelos con mejor rendimiento, logrando más del 91% de TPR.
El documento también discute un caso de uso que demuestra la capacidad del sistema para
identificar de manera única 25 sensores de espectro IoBT, abordando ataques enfocados
en la identidad y mejorando la seguridad.

Como se comentó anteriormente, SpecForce estaba equipado con otros enfoques de
ciberseguridad utilizando monitoreo de eventos de kernel y comportamiento de llamadas al
sistema para detectar ataques cibernéticos de nivel superior. En el contexto de la detección
de ataques SSDF, el framework permite el monitoreo de llamadas al sistema de sensores
de espectro IoBT, con el objetivo de detectar varios ataques SSDF. Las llamadas al sis-
tema se procesan para generar vectores de características que modelan las actividades de
detección de espectro, utilizando algoritmos de detección de anomalías para distinguir en-
tre comportamientos normales y maliciosos. Los resultados muestran un alto rendimiento
en el reconocimiento de comportamientos normales, con más del 99% de Tasa de Nega-
tivos Verdaderos (TNR) y un TPR loable de más del 92% para la detección de ataques
SSDF. Además, en lo que respecta a la detección de malware heterogéneo (botnets, puertas
traseras, etc.), se logró un alto rendimiento al monitorear eventos de kernel combinados
con detección de anomalías de ML/DL, con un TPR del 90% y un TNR del 96%.

En el contexto de ataques adversariales, la siguiente publicación de la Tesis Doctoral
(Article 5–FGCS) arrojó luz sobre las posibles vulnerabilidades y amenazas que pueden
comprometer la integridad de los mecanismos de modelado e identificación de dispositivos.
Discute varios vectores de ataque, ilustrando cómo las entidades maliciosas podrían manip-
ular o eludir mecanismos de identificación basados en hardware para alcanzar sus nefastos
objetivos. El artículo subraya la necesidad de estrategias de defensa integrales capaces
de mitigar los riesgos asociados con ataques adversariales, asegurando la robustez de los
procesos de identificación de dispositivos. El primer resultado principal de este trabajo fue
la mejora en los resultados de identificación alcanzados en trabajos anteriores. Utilizando
enfoques de series temporales combinados con modelos de DL, los resultados de identifi-
cación se incrementaron a un TPR promedio de +0.96 con un TPR mínimo de 0.80 en
los 45 dispositivos RPi utilizados para la validación, aprovechando un modelo combinado
de LSTM+1D-CNN. Con respecto a ataques adversariales, tanto ataques centrados en el
contexto como en ML/DL se aplican para evaluar la robustez del modelo de identificación
de dispositivos. Se hace una mención específica de un ataque de contexto basado en la
temperatura, que, curiosamente, se encontró ineficaz para interrumpir el proceso de identi-
ficación de dispositivos, ya que el aislamiento de hardware durante la recolección de datos
ya estaba considerando la mitigación del impacto del contexto. Sin embargo, el documento
reconoce el éxito de ciertos ataques de evasión de ML/DL de última generación, como BIM,
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MIM y JSMA.
En el lado de la defensa, el documento proporciona una exploración exhaustiva de

varias estrategias y metodologías destinadas a proteger los dispositivos IoT de amenazas
adversariales. Profundiza en enfoques basados en ML y contexto, evaluando su efectividad
para mejorar la seguridad y fiabilidad del modelado e identificación de dispositivos. Los
ataques basados en contexto centrados en la temperatura son ineficaces debido a las me-
didas de estabilidad y aislamiento de hardware tomadas durante la recolección de datos.
En cuanto a las defensas contra ataques de evasión de ML/DL, se aplican la destilación
de conocimientos y el entrenamiento adversarial para reducir el impacto de los ataques.
Los resultados destacan el papel crítico de estos mecanismos de defensa para mantener la
integridad de los ecosistemas IoT, asegurando que los dispositivos sean identificados con
precisión y que las entidades maliciosas sean frustradas. En términos de rendimiento, la
tasa de éxito de los ataques se redujo de 0.88 a 0.17 en el peor de los casos sin causar una
degradación sustancial en el rendimiento. Finalmente, se utilizan varias métricas de seguri-
dad para evaluar la resiliencia de las redes neuronales contra perturbaciones y variaciones
adversarias en la entrada. Se discuten métricas como el puntaje CLEVER, la sensibili-
dad a la pérdida y la robustez empírica [40], proporcionando ideas sobre cómo se puede
cuantificar y evaluar la robustez de los modelos de ML.

La última publicación de la tesis doctoral (Article 6–COSE) se centró en el problema de
la autenticación individual. Propuso un framework de autenticación que utilizaba datos
de rendimiento del hardware y modelos autoencoder basados en transformers. El diseño
del framework está respaldado por un modelo de amenazas que describe los desafíos de
seguridad encontrados al implementar la autenticación basada en hardware en contextos
IoT. Como en trabajos anteriores, se monitorearon componentes clave del hardware, como
la CPU, GPU, RAM y almacenamiento, para la recolección de datos de modelado. Estas
huellas fueron utilizadas como datos de series temporales, aplicando ventanas de tiempo de
10 a 100 valores. Las series temporales generadas se utilizan entonces para entrenar mod-
elos transformers para la detección de anomalías, adaptados a cada dispositivo individual,
con el objetivo de representarlo y autenticarlo con precisión. La efectividad del framework
se demostró además a través de su aplicación en un sistema de crowdsensing de espectro
utilizando dispositivos Raspberry Pi. Los modelos transformers se compararon con enfo-
ques LSTM y 1D-CNN en términos de rendimiento. Aquí, en una serie de experimentos
rigurosos que involucraron 45 dispositivos para validación, cada modelo transformador del
dispositivo demostró ser capaz de autenticarlo con precisión. En contraste, otros enfoques
no fueron capaces de autenticar de manera única todos los dispositivos. El enfoque logró
una impresionante TPR promedio de 0.74±0.13 y mantuvo un FPR máximo promedio de
0.06±0.09, subrayando su potencial para mejorar significativamente la autenticación, la
seguridad y la confiabilidad en aplicaciones de crowdsensing. Además, también se analizó
el uso de recursos de los diferentes enfoques probados, confirmando uno de los principales
inconvenientes de los modelos transformers; esta fue la técnica de ML/DL que utilizó más
recursos en términos de tiempo y memoria.

V Conclusiones y trabajo futuro

Esta tesis proporciona un examen exhaustivo y completo del campo del fingerprinting
del comportamiento de dispositivos, con un enfoque específico en su aplicación dentro del
ámbito de la ciberseguridad, y un énfasis matizado en la identificación y autenticación de
dispositivos de placa única y IoT. La investigación comienza con una revisión extensa y
sistemática del panorama actual, capturando la amplitud y profundidad de las soluciones
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de fingerprinting del comportamiento de dispositivos que se han explorado e implementado
dentro del dominio de la ciberseguridad. Esta fase inicial de exploración sirve para sentar
una base sólida de conocimiento, desentrañando las complejidades de varias fuentes de
datos, técnicas de fingerprinting, escenarios de aplicación y los conjuntos de datos que
prevalecen dentro de las esferas académicas y prácticas de este campo. A partir de esta
exploración, se deriva un nuevo conjunto de lecciones y tendencias de la literatura, dando
una visión holística de trabajos anteriores. Sin embargo, la principal novedad desde una
perspectiva de investigación es la lista de desafíos identificados en la literatura, que no
estaban definidos antes y allanaron el camino para futuras investigaciones.

A medida que la historia avanza, el foco se desplaza a la implementación práctica de
la identificación de dispositivos, con la propuesta de una metodología clara y detallada
para identificar de manera única dispositivos IoT. Este proceso está intrínsecamente lig-
ado a las capacidades proporcionadas por las técnicas de ML y DL. Estas herramientas
computacionales avanzadas pueden ser aprovechadas para descifrar las sutiles matices del
comportamiento del hardware, asegurando un alto nivel de autenticidad e integridad para
dispositivos integrados dentro de una red. La importancia de este proceso no puede ser
exagerada, ya que juega un papel fundamental en la salvaguarda de la seguridad y confiabil-
idad de dispositivos interconectados, formando un componente crítico de la infraestructura
de ciberseguridad más amplia. Para resaltar esta importancia, la metodología presentada
se compara con otros trabajos en el campo, donde no se siguió un conjunto metodológico de
pasos. Las soluciones anteriores no fueron capaces de realizar una identificación completa
en el escenario de dispositivo real utilizado para la validación. Por lo tanto, la metodología
se convierte en el procedimiento de vanguardia para desarrollar una solución funcional de
identificación individual.

Construyendo sobre la metodología de identificación establecida, la narrativa profun-
diza en el aspecto crítico de la recolección de datos, presentando un enfoque integral para
la adquisición sistemática de datos de rendimiento del hardware. Generar los conjuntos de
datos requeridos para el fingerprinting de comportamiento posterior es esencial. Estos con-
juntos de datos ayudan a asegurar que los modelos de identificación se entrenen y validen
con datos que son tanto extensos como precisos. La meticulosa atención al detalle en este
proceso asegura la fiabilidad de los datos, estableciendo un alto estándar para la calidad
de la información utilizada en el fingerprinting del comportamiento de dispositivos. Como
resultado de la herramienta propuesta para la recolección de datos, se genera un conjunto
de datos exhaustivo para ser aplicado en los siguientes pasos de la tesis. Este conjunto
de datos se publica para ser utilizado por la comunidad de investigación en el campo,
junto con la aplicación de benchmark empleada para generar los datos. Este es uno de los
primeros conjuntos de datos públicos de datos de rendimiento del hardware que se centra
en el problema de identificación.

Con una base sólida de datos en su lugar, la exploración luego navega hacia la inte-
gración de la identificación individual de dispositivos dentro del ecosistema más amplio de
soluciones de ciberseguridad basadas en comportamiento. Esta integración es fundamen-
tal, ya que asegura que los procedimientos de identificación de dispositivos no operen de
manera aislada, sino que estén vinculados sin problemas con otros frameworks de seguridad
generales. Para esta integración, el enfoque se coloca estratégicamente en el Internet de
las Cosas del Campo de Batalla. Se emplea un escenario del mundo real para integrar
la solución de identificación basada en hardware con un monitoreo de comportamiento de
nivel superior para la detección de malware y ataques de falsificación de datos de espectro.
Específicamente, el enfoque unificado monitorea hardware, eventos de kernel y llamadas al
sistema para proporcionar una solución de seguridad unificada basada en comportamiento.
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Este enfoque holístico mejora la resiliencia del entorno, fortaleciendo sus defensas contra
una miríada de amenazas y vulnerabilidades cibernéticas, y asegurando un entorno digital
robusto y seguro. El framework unificado demuestra experimentalmente sus capacidades
para detectar diferentes muestras de malware y ataques centrados en datos de espectro,
así como realizar la identificación individual de los sensores desplegados. Hasta donde
sabemos, este es el primer framework que combina estas capacidades de ciberseguridad
juntas.

A medida que el trabajo alcanza su culminación, el enfoque se dirige a la seguridad de los
modelos de identificación de dispositivos en sí mismos, abordando específicamente los de-
safíos planteados por los ataques adversarios. Se analiza el panorama de los ataques adver-
sarios, centrándose particularmente en las amenazas conscientes del contexto y centradas
en ML/DL que representan riesgos significativos para la integridad de las metodologías de
identificación de dispositivos. Luego, el enfoque se adentra en estrategias y metodologías
diseñadas para mejorar la resiliencia de los modelos de identificación basados en el compor-
tamiento del hardware. Se pone un énfasis particular en contrarrestar amenazas adversarias
sofisticadas, incluyendo ataques basados en contexto y centrados en ML/DL. Los ataques
basados en contexto son ineficaces contra la solución, pero los ataques de evasión dirigidos
a los modelos de identificación logran altas tasas de éxito. Por lo tanto, se aplican técnicas
de defensa basadas en entrenamiento adversario y destilación de conocimiento. Esto ase-
gura que las metodologías de identificación de dispositivos sigan siendo confiables, seguras
y efectivas, incluso frente a amenazas cibernéticas en evolución y complejas. Este es uno
de los primeros trabajos que demuestra experimentalmente la efectividad de los ataques
adversarios en modelos de ML para la identificación de dispositivos IoT, y también de
métodos de defensa de vanguardia.

Finalmente, la investigación explora el problema más complejo de la autenticación de
dispositivos individuales, donde solo se pueden aprovechar los datos de un dispositivo para
la generación del modelo. La metodología aplicada para la identificación se ajusta para su
aplicación en la autenticación. La principal diferencia es el cambio del modelo clasificador
por un modelo de detección de anomalías por dispositivo. Sin embargo, se necesitan mode-
los de ML/DL más potentes para resolver este problema, ya que las distribuciones de datos
se superponen entre dispositivos del mismo modelo. Para resolver este problema, se em-
plean modelos transformers. Utilizando ventanas de tiempo grandes para el procesamiento
de datos (100 valores), el enfoque basado en transformers mejora los resultados logrados
por modelos de vanguardia anteriores, como LSTM, 1D-CNN y su combinación. En con-
traste, se emplea más tiempo de entrenamiento y memoria en el proceso de generación del
modelo. Este resultado confirma la efectividad de la arquitectura transformadora en un
área novedosa. A diferencia de las arquitecturas de modelos existentes en la literatura,
aborda con éxito el problema de autenticar individualmente dispositivos IoT basados en
su rendimiento de hardware en el escenario experimental estudiado.

Mirando hacia adelante, hay un vasto horizonte de oportunidades para trabajos futuros
basados en los cimientos establecidos por esta tesis en el dominio del fingerprinting del com-
portamiento de dispositivos. La primera iteración de trabajos futuros podría profundizar
en la evaluación de ataques adversarios sobre los modelos transformers no supervisados em-
pleados para resolver el problema de identificación individual, y la consecuente aplicación
de técnicas de defensa. Estos resultados cerrarán el trabajo sobre el tema de autenticación
de manera similar a la metodología aplicada para el problema de identificación individual.

Otra avenida prometedora es expandir el alcance del fingerprinting del comportamiento
de dispositivos para abarcar una gama más amplia de dispositivos y contextos. El trabajo
actual se ha centrado predominantemente en dispositivos de placa única e IoT. Sin em-
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bargo, los principios y metodologías desarrollados podrían adaptarse y aplicarse a otros
tipos de dispositivos y redes, como sistemas de control industrial, sistemas automotrices y
dispositivos de hogares inteligentes. Investigaciones futuras podrían explorar las sutilezas y
requisitos específicos de estos diferentes contextos, adaptando las técnicas de fingerprinting
para ajustarse a las características únicas de cada categoría de dispositivo y escenario de
uso. Uno de los ámbitos cruciales destacados para futuras exploraciones es la búsqueda
continua de nuevas y diversas fuentes de datos. El campo se beneficiaría significativamente
de ampliar el alcance de la recolección de datos, capturando una gama más amplia de
comportamientos de dispositivos y asegurando un conjunto de datos más rico y completo
para análisis. Este esfuerzo no solo se limita a aumentar la cantidad de datos sino tam-
bién enfatiza la importancia de mejorar la calidad y fiabilidad de los datos recopilados.
Trabajos futuros en esta área podrían explorar metodologías avanzadas de recolección de
datos, tecnologías innovadoras de sensores y técnicas novedosas de preprocesamiento de
datos, todo con el objetivo de asegurar que los datos utilizados para el fingerprinting del
comportamiento de dispositivos sean de la más alta calidad.

Construyendo sobre el tema de datos, hay un claro llamado para el desarrollo y refi-
namiento de técnicas de fingerprinting. El futuro tiene potencial para la exploración de
nuevos algoritmos, modelos de ML y arquitecturas de DL, cada uno ofreciendo capacidades
y ventajas únicas para la identificación de dispositivos. El Aprendizaje Federado (FL), y
más concretamente el FL descentralizado, es una de estas áreas prometedoras que vale la
pena explorar en los próximos años. La continua evolución del poder computacional y las
tecnologías de ML/DL abre posibilidades emocionantes para crear modelos de fingerprint-
ing del comportamiento de dispositivos más sofisticados y precisos, capaces de discernir
incluso las sutilezas más sutiles en el comportamiento de dispositivos.

Abordando el desafío de los ataques adversarios, hay una necesidad apremiante de de-
sarrollar contramedidas robustas y estrategias de mitigación. Trabajos futuros en esta área
podrían explorar enfoques innovadores para mejorar la resiliencia de los modelos de fin-
gerprinting del comportamiento de dispositivos, con un enfoque específico en contrarrestar
amenazas adversarias sofisticadas, incluyendo ataques basados en contexto y centrados en
ML/DL. Esto implica no solo fortalecer los modelos de identificación sino también desar-
rollar mecanismos integrales de detección y respuesta a amenazas, asegurando la fiabilidad
y seguridad a largo plazo de las metodologías de identificación de dispositivos.

Otra área crítica para trabajos futuros radica en mejorar la adaptabilidad de los mode-
los de fingerprinting del comportamiento de dispositivos. Con el rápido ritmo de avance tec-
nológico, los dispositivos están en constante evolución, y sus patrones de comportamiento
pueden cambiar con el tiempo debido a actualizaciones de software, modificaciones de
hardware o cambios en los patrones de uso. Investigaciones futuras podrían centrarse en
desarrollar modelos de fingerprinting capaces de adaptarse a estos cambios, asegurando
que sigan siendo precisos y confiables a lo largo del ciclo de vida del dispositivo. Esto
podría implicar la integración de técnicas de aprendizaje en línea, enfoques de aprendizaje
continuo o metodologías de aprendizaje por transferencia para permitir que los modelos
actualicen y refinan sus perfiles de fingerprinting en respuesta a los cambios observados en
el comportamiento de los dispositivos.

Finalmente, hay un potencial significativo para trabajos futuros en la integración de
soluciones de fingerprinting del comportamiento de dispositivos con otras herramientas y
frameworks de ciberseguridad. Esta tesis ha sentado las bases para dicha integración, de-
mostrando los beneficios potenciales de combinar el fingerprinting del comportamiento de
dispositivos con otras soluciones de seguridad basadas en comportamiento. Investigaciones
futuras podrían basarse en esto, explorando formas de optimizar aún más el proceso de
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integración, mejorar la interoperabilidad y maximizar las sinergias entre diferentes her-
ramientas de seguridad. Esto podría llevar a la creación de frameworks de ciberseguridad
más holísticos y resilientes, proporcionando protección integral contra una amplia gama de
amenazas cibernéticas.
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In the current network-based computing world, where the number of interconnected devices
grows exponentially, their diversity, malfunctions, and cybersecurity threats are increasing
at the same rate. To guarantee the correct functioning and performance of novel envi-
ronments such as Smart Cities, Industry 4.0, or crowdsensing, it is crucial to identify
the capabilities of their devices (e.g., sensors, actuators) and detect potential misbehavior
that may arise due to cyberattacks, system faults, or misconfigurations. With this goal in
mind, a promising research field emerged focusing on creating and managing fingerprints
that model the behavior of both the device actions and its components. The article at hand
studies the recent growth of the device behavior fingerprinting field in terms of application
scenarios, behavioral sources, and processing and evaluation techniques. First, it performs
a comprehensive review of the device types, behavioral data, and processing and evalua-
tion techniques used by the most recent and representative research works dealing with
two major scenarios: device identification and device misbehavior detection. After that,
each work is deeply analyzed and compared, emphasizing its characteristics, advantages,
and limitations. This article also provides researchers with a review of the most relevant
characteristics of existing datasets as most of the novel processing techniques are based
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Abstract—In the current network-based computing world,
where the number of interconnected devices grows exponen-
tially, their diversity, malfunctions, and cybersecurity threats are
increasing at the same rate. To guarantee the correct function-
ing and performance of novel environments such as Smart Cities,
Industry 4.0, or crowdsensing, it is crucial to identify the capabil-
ities of their devices (e.g., sensors, actuators) and detect potential
misbehavior that may arise due to cyberattacks, system faults, or
misconfigurations. With this goal in mind, a promising research
field emerged focusing on creating and managing fingerprints
that model the behavior of both the device actions and its compo-
nents. The article at hand studies the recent growth of the device
behavior fingerprinting field in terms of application scenarios,
behavioral sources, and processing and evaluation techniques.
First, it performs a comprehensive review of the device types,
behavioral data, and processing and evaluation techniques used
by the most recent and representative research works dealing
with two major scenarios: device identification and device mis-
behavior detection. After that, each work is deeply analyzed and
compared, emphasizing its characteristics, advantages, and limi-
tations. This article also provides researchers with a review of the
most relevant characteristics of existing datasets as most of the
novel processing techniques are based on Machine Learning and
Deep Learning. Finally, it studies the evolution of these two sce-
narios in recent years, providing lessons learned, current trends,
and future research challenges to guide new solutions in the area.

Index Terms—Device behavior fingerprinting, device identifi-
cation, cyberattack detection, behavioral data, processing and
evaluation techniques, device behavior datasets.

I. INTRODUCTION

PREVISIONS for 2025 estimate nearly 64 billion IoT
devices connected to each other into diverse cutting-edge
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environments such as Smart Cities, Industry 4.0, or crowd-
sensing (e.g., Flightradar24, OpenSky, ElectroSense), among
others [1]. These environments have their own particulari-
ties in terms of devices, data, communications, and purposes,
which increase the complexity of achieving one of their com-
mon challenges: to optimize the performance of devices and
provide accurate services. To meet this challenge, the advance-
ment of communication networks and computing paradigms
has influenced that behavioral data science evolved from
studying theoretical and empirical issues related to human
behaviors [2] –its initial scope– to conquer the cyberworld and
offer a promising alternative to model device behaviors [3].
Nowadays, a thriving research field within behavior data
science focuses on creating device behavior patterns (finger-
prints) able to optimize their performance and detect potential
issues in the early stages [4], [5]. In this context, this article
studies the recent growth of the device behavior research field
in terms of application scenarios, behavioral sources, and pro-
cessing and evaluation techniques. Fig. 1 shows an overview
of the typical life cycle implemented by the literature, where
different devices, techniques, and application scenarios are
considered.

The first step to build a device fingerprint is to identify the
application scenario where it will be needed. By keeping in
mind the goal of optimizing devices and systems performance,
the literature has recognized two critical application scenar-
ios. The first one consists in identifying devices with different
granularity levels –to differentiate them and fully exploit their
capabilities [6]– while the second focuses on detecting cyber-
attacks [7], malfunction [8], or misbehavior [9] –to mitigate
them. The nature of each scenario influences the selection
of behavioral sources, data, and techniques employed to cre-
ate fingerprints since the detection of misbehavior produced
by a given cyberattack is different from identifying several
IoT devices of the same family. Even in the same appli-
cation scenario, the behavioral data might be different as
well; this is the case of some cyberattacks affecting network
communications [10], while others impact the CPU usage [11].

In both application scenarios, the literature contains an
extensive number of works where device fingerprinting has
been applied [3], [4], [12], [13], [14], [15], [16]. On the one
hand and in terms of device identification, behavioral data
science has dramatically improved the limitations of tradi-
tional solutions, mainly focused on using names, identifiers,
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Fig. 1. Common life cycle implemented by device behavior fingerprinting solutions.

labels, or tags to identify devices [17]. The main limitation
of these approaches is that they can be modified or even
duplicated in an environment where the number of devices
grows exponentially. Another relevant drawback appears when
device identification is performed at different granularity lev-
els, requiring multiple labels and increasing management
complexity. Nowadays, the literature categorizes the follow-
ing identification granularity levels: type, with the main goal
of creating fingerprints able to detect different types of
devices [6]; model, focused on identifying different models
of devices based on common hardware and software [18];
and individual, probably the most challenging level because it
tries to identify identical physical devices according to minor
differences occurred during manufacturing processes [14].

On the other hand and with the goal of detecting misbe-
havior or malfunction caused by cybersecurity issues, novel
and sophisticated cyberattacks are influencing the replacement
of traditional cybersecurity techniques. Existing mechanisms
based on signatures are no longer effective against unseen,
encrypted, or large-scale cyberattacks, and device fingerprint-
ing has been identified as one of the most promising solutions to
tackle this challenge [19]. A relevant number of works found in
the literature rely on creating “normal” behavioral fingerprints
to spot changes caused by some previous issues [7], [15], [20].
In this case, fingerprint evaluation is usually tackled from an
anomaly detection perspective [7], [21].

In this context, the article at hand performs a comprehen-
sive analysis of the main characteristics –devices, behavioral
sources, data, and techniques– considered by the most rep-
resentative and recent works of device identification and
malfunctioning detection scenarios. Besides, it studies how
characteristics of device identification, and misbehavior and
malfunction detection scenarios are evolving since last years.

Once having the fingerprints, there is another exciting
research area focused on applying the most suitable tech-
niques to process and evaluate them. Statistical approaches
have been dominating the field for the last decades. However,
the incursion of Artificial Intelligence (AI), and more con-
cretely Machine and Deep Learning (ML and DL) as the
dominating trend, shifted the field and generated an open dis-
cussion concerning the most suitable methods per scenario.
This manuscript seeks to help readers understand the trend
concerning behavior processing and evaluation techniques, as

well as the most appropriate techniques for each application
scenario.

Influenced by the rise of AI techniques, there is also a cres-
cent necessity of exhaustive datasets with which algorithms
can train models able to learn and infer valuable information
aligned with the target scenarios. Datasets are also critical to
have standard benchmarks enabling fair comparisons of exist-
ing techniques and solutions. In this direction, this article also
pretends to support researchers working on the device behavior
research field with a review of the most relevant characteristics
of existing datasets.

II. MOTIVATION AND CONTRIBUTIONS

Device behavior fingerprinting is an encouraging research
field that has inspired the publication of several survey articles
for the last years. In terms of device identification, in 2016,
Xu et al. [22] reviewed unique device fingerprinting in wireless
networks. Moreover, Baldini and Steri [23] published in 2017
a review on mobile phone identification based on its hard-
ware components. Regarding the usage of device fingerprint
for cybersecurity purposes, the surveys related to this study
are mainly focused on Intrusion Detection Systems (IDS). In
2018, Elrawy et al. [25] published a study focused on IDS and
IoT-based smart environments. Similarly, Khraisat et al. [26],
in 2019, published another review on general IDS-related solu-
tions and public datasets, mostly containing network data.
In [19], Mishra et al. published a survey, in 2017, where
IDS analysis is addressed with a focus on cloud environments.
This work explicitly considers system behavior analysis, one
of the main sources to ensure a cloud system. Finally, in 2018,
Liu et al. [24] analyzed existing solutions and datasets cov-
ering attack detection based on system calls, with a special
focus on embedded devices.

Despite the contributions of the previous works, as illus-
trated in Table I, none of them addresses device identification
and misbehavior detection in the same study. Besides, no
previous survey contemplates device behavior fingerprinting
for component malfunctioning detection. In addition, there is
no recent work reviewing from a broad and exhaustive per-
spective datasets designed both for device identification and
for intrusion or malfunction detection. Moreover, other sur-
veys in domains such as digital forensics [27], threat hunting,
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TABLE I
COMPARISON OF SURVEY WORKS CONSIDERING DEVICE BEHAVIOR FINGERPRINTING

Fig. 2. Discussed questions per article section.

and threat intelligence [28], relying on device identification or
attack and fault detection as a basis, also considered behav-
ior fingerprinting as an issue or challenge to cover, motivating
the importance of this work. In this context, the literature has
some research questions that need to be solved. As the main
relevant, we highlight:

• Q1. Which scenarios, device types, and sources are
present in behavior-based solutions? Depending on the
application scenario –device identification or malfunction
detection– and the problem to be solved, the devices and
behavioral sources vary. However, in the literature, there
is no solution detailing these elements and how they are
combined.

• Q2. What and how behavior processing and evaluation
tasks are used in each scenario? Device behavior can
be processed and evaluated following diverse approaches.
However, the literature has not studied these approaches
from a broad perspective to have a complete view in the
area.

• Q3. What characteristics do the most recent and repre-
sentative solutions of each application scenario have? It
is required to analyze how device types and behavioral
sources are utilized to solve the problems motivated by
each application scenario. Furthermore, it is also needed
to detect the limitations of solutions related to both
scenarios.

• Q4. Which behavior datasets are available and which
are their characteristics? There is no study detailing the
public datasets aligned with device behavior from a broad

perspective, analyzing their characteristics, and defining
in which application scenarios they can be utilized.

• Q5. How have application scenarios evolved for the last
years? To establish the guidelines for future research, it
is critical to describe how device behavior analysis is
evolving in the last years and which are the current trends
and open challenges of the area.

These research questions are closely related to each other
and draw a complete picture of the existing challenges in
device behavior analysis for identification and attack and mal-
functioning detection. Q1 and Q2 deal with devices, data
sources, and techniques used for device fingerprinting. Q3 and
Q4 refer to current publications and datasets of device behavior
–the key aspects of this survey and core sections of the docu-
ment. While Q5 focuses on the consequences of the research
done so far and its future. Fig. 2 shows where and how the
previous questions are addressed in the article at hand, acting
as table of contents.

To answer the previous questions and provide readers with
an up-to-date vision of device behavior fingerprinting, the
main contributions of this manuscript are:

• An analysis of the behavior data sources and device types
utilized in the literature, paying attention to the appli-
cation scenarios in which each source is contemplated
(answering Q1 in Section III).

• A description and comparison of the main techniques and
algorithms utilized to model and evaluate device behavior
based on the morphology of the available data (answering
Q2 in Section IV).
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• A comprehensive review and comparison of the charac-
teristics, advantages, and limitations of the most relevant
proposals that consider device behavior to 1) identify
device models or types, 2) identify individual devices,
3) detect cyberattacks, and 4) detect device/system func-
tioning faults (answering Q3 in Section V).

• A description of the principal public datasets containing
device activity and behavior. This description is divided
into datasets designed for device identification and for
attack or behavior anomaly detection (answering Q4 in
Section VI).

• A set of lessons learned, current trends, and future chal-
lenges drawn from the device behavior works and datasets
reviewed (answering Q5 in Section VII).

The remainder of this article is organized as follows.
Section III gives an analysis of device types, application sce-
narios, and behavior sources. Section IV reviews the main
approaches and algorithms utilized to process behavioral data.
Section V describes and compares the main solutions found
in the state-of-the-art. Section VI examines the main public
datasets containing device activities. Section VII draws a set
of lessons learned, current trends, and future challenges in the
research area. Finally, Section VIII provides an insight into
the conclusions extracted from the present work.

III. BEHAVIOR CHARACTERIZATION ANALYSIS

With the goal of answering Q1 (Which scenarios, device
types, and sources are present in behavior-based solutions?),
this section studies the most used and promising scenarios
where device behavior has been considered: device identi-
fication and misbehavior detection. After that, and aligned
with these scenarios, it analyzes the main device types from
which behavioral data is obtained, and the most common
behavior dimensions and characteristics considered by device
fingerprint solutions existing in the literature.

A. Application Scenario

According to the heterogeneous capabilities of device
behavior fingerprinting, the literature has applied it in a wide
variety of scenarios with different objectives. After reviewing
the state-of-the-art, we highlight the following two categories
as the most used and well-known: Device identification and
Misbehavior detection.

1) Device Identification: It uses the behavior of devices
to identify them and their characteristics. This task can be
performed from the following two perspectives.

Device type or model identification. Device type identi-
fication [6], [12] aims to recognize the device category such
as general computer, IoT sensor, or embedded device, among
others. In contrast, device model identification [18], [29] aims
to differentiate between devices of the same type but different
hardware and software configurations.

Individual device identification [14], [30] distinguishes
between devices with identical hardware and software capa-
bilities. This approach requires the lower level data, usually
related to hardware variations during fabrication. Although

device activity can also be employed to model user behav-
ior and perform user’s identification and authentication
[31], [32], [33], user inputs and activity monitoring fall out
of the scope of this study, which is focused only on device
behavior analysis, without human interaction.

2) Misbehavior Detection: It seeks to identify anomalous
situations based on changes in normal device behaviors. The
anomalous situations are very varied; therefore, the solutions
trying to recognize these situations are also heterogeneous.
The next two main families of behavior anomaly detection
solutions can be found in the literature.

Attack detection [7], [20], [34], [35] intends to detect
anomalies, created by cyber threats, according to the
previously known normal device behavior. These solutions
are commonly deployed as an IDS based on device behav-
ior, being either Network-based (NIDS) or Host-based (HIDS).
The cyberattacks detected using behavior are very diverse and
depend on the monitored dimensions. These can range from
impersonation and spoofing to malware execution.

Malfunction and fault detection [8], [16], [36] tries to
identify devices that are not functioning correctly because
some component or service is failing. The malfunctioning
could be caused by faults such as damaged hardware, a service
or hardware overload, or network issues. Solutions addressing
this approach assume that the fault will somehow affect the
general device behavior.

B. Device Type

Device activities, properties, and interactions can be mon-
itored in an exhaustive range of heterogeneous devices and
systems. Then, behavioral patterns can be built with diverse
goals by almost any device. However, the data collection pro-
cess is different depending on factors such as device hardware
and software. At this point, it is important to describe the
principal device and system categories used in the previous
application scenarios.

Personal computers: This category includes computers com-
monly found in homes and workplaces [37]. We can differen-
tiate two main kinds of personal computers, desktop devices
and laptops, differentiated by power supply.

Mobile devices: Smartphones and tablets are grouped in this
category. Mobile devices are mainly constrained by battery.

Embedded systems: These low-cost systems are designed
and built to perform very specific tasks and their functionality
is usually limited by processing and energy constraints [38].

Industrial Control Systems (ICS): This family groups
devices and systems that supervise and control critical services
of industrial processes [39], involving sensors and actuators.
ICSs are usually deployed as supervisory control and data
acquisition (SCADA) systems [40].

IoT devices: Any system with processing power and con-
nected to the Internet can be considered as an IoT device.
Typically, the IoT device concept is associated with embed-
ded systems with connectivity capabilities such as sensors and
smart-home objects. However, it covers a wider variety of
devices [38], including drones, or wearable devices, among
others.

Authorized licensed use limited to: Pedro Miguel Sanchez Sanchez. Downloaded on May 08,2023 at 10:31:47 UTC from IEEE Xplore.  Restrictions apply. 

A Survey on Device Behavior Fingerprinting: Data Sources, Techniques,
Application Scenarios, and Datasets

8 PhD Thesis – Pedro Miguel Sánchez Sánchez



1052 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 23, NO. 2, SECOND QUARTER 2021

Cloud systems: They provide the following three principal
service models, in which resources can be accessed remotely
and through network [41]: Infrastructure as a Service (IaaS),
Platform as a Service (PaaS), and Software as a Service
(SaaS). In the last years, Cloud paradigm has evolved towards
Fog [42] and Edge Computing [43], where cloud systems
are deployed closer to end-user devices, reducing latency and
speeding up computations.

SDN/NFV systems: SDN and NFV are concepts that usu-
ally appear together, although they can also be utilized
separately [44]. The Software Defined Networking (SDN)
paradigm [45] is a network architecture where network control
is decoupled from the data plane, having a centralized con-
troller managing the traffic flows and enabling network pro-
grammability and abstraction. Network Function Virtualization
(NFV) paradigm [46] is a network architecture where network
devices are vitalized using software implementations.

Containers and microservices: Containers are software
packages that include an application code and all its dependen-
cies, allowing a lightweight deployment. Microservices [47]
are applications with a single fixed function, commonly
deployed as containers. Several microservices can be com-
bined to build more complex applications distributedly.

Clusters: A cluster is a set of computers, typically Linux
devices [48], connected closely to combine their resources and
work as a single system. Then, the cluster behavior will be
defined by the behavior of its components.

C. Behavior Source

Once the most representative application scenarios and
devices have been explained, it is necessary to describe the
behavior sources found in the literature, their pros and cons,
and the solutions using each source. This description has been
structured by following the next two main categories consid-
ered in the literature: externally-collected behavior sources
and in-device behavior sources. Finally, the key aspects of
the behavior data considered by each solution are compared.

1) Externally-Collected Behavior Sources: In this category,
an external device is used to monitor the device behavior.
Concretely, network communications and emitted electromag-
netic signals are the main externally-collected sources used to
model devices behavior. In the case of network-based data,
data is usually collected by a proxy or a gateway, while elec-
tromagnetic signal-based data is collected by a sensor through
an antenna.

Network communications: From the network communica-
tions perspective, a diverse set of behavioral features can be
extracted by monitoring network packets. They depend on the
granularity of the traffic inspection and the TCP/IP layers gath-
ered. The main advantage of this dimension is its universality,
as almost any device has network interfaces, and the possibility
of monitoring many devices from a single gateway. As draw-
backs, this dimension can suffer impersonation attacks and
encryption makes data analysis more difficult. In this context,
some solutions only focus on the amount of data sent/received
and the IPs to which the device is connected [9], [49]. Other

solutions also perform packet header and flow statistics anal-
ysis [12], [50]. And finally, other solutions also include data
related to transport or application layer protocols or payload
data [51], [52]. Generally, payload data is protected using
encryption methods, so the majority of solutions utilize header
and flow-based data. However, some works focus on encrypted
communication analysis for fingerprinting [53], [54]. From the
application usage point of view, this category is utilized for
device model identification [4], [50], device type identifica-
tion [6], [13], [55], attack detection [7], [15], [56] and fault
detection [57].

Clock Skew: Based on crystal oscillator imperfections that
occurred during the manufacturing process, internal clock
counters of different devices have slight variations. In this
sense, it is possible to utilize this characteristic to differentiate
devices based on their hardware behavior. The main advan-
tage of this source is that it can be collected from outside
the device. As drawback, clock skew distribution concentrates
around 0, so this source cannot be applied as a unique source
in large device deployments [58]. Clock skew can be cal-
culated by observing how internal device timestamps vary
in time, mainly using TCP and ICMP timestamps [59] and
Wi-Fi beacon timestamps [60], [61], so it can be seen as a
special category of network-based data. From the application
perspective, clock skew has been utilized for individual device
identification [60], [61], [62], [63].

Electromagnetic signals: This category relies on the behav-
ior of electromagnetic signals emitted by each device. Its main
advantage is the difficulty of tampering it, as it depends on
emitted signal properties. In terms of disadvantages, we high-
light that the data gathering process must be physically close
to the monitored device, since electromagnetic signals lose
intensity as the distance to the transmitter increases. Radio
signals are used in the literature to distinguish drone mod-
els [64], [65], [66], [67] and to identify physical devices [14],
[68]. However, although radio signals have been utilized to
detect anomalies in the radio spectrum [69], no solution specif-
ically focused on device behavior anomaly detection using
radio signals has been found. Following a similar approach,
other solutions utilize the electromagnetic signals radiated
from the device components to identify physical devices [70].

Table II compares the main characteristics of externally-
collected data. As observed, features related to network
communications are used both for device identification and
misbehavior detection, as this source is very heterogeneous.
In contrast, clock skew and electromagnetic-based features are
only applied in device identification, as they are lower-level
sources related to device component characteristics.

2) In-Device Behavior Sources: In this category, behav-
ioral data monitoring is performed on the target devices. Thus,
lower-level data related to the device internal functioning can
be collected. This approach has the advantage of not requiring
a connection to an external monitoring device. In contrast, as a
drawback, if the device suffers an anomaly, such as an attack,
the monitoring solution may suffer it as well.

Hardware Events: Hardware Performance Counters (HPC)
are special registers built into modern microprocessors that
store hardware-related event counters. The main advantage of
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TABLE II
EXTERNALLY-COLLECTED BEHAVIOR CHARACTERISTICS. (DI: DEVICE

IDENTIFICATION. MD: MISBEHAVIOR DETECTION)

this category is the precision achieved to model the device
operation from a low-level perspective. In contrast, the quan-
tity and morphology of the HPCs depend on the device CPU
model, which makes it difficult to build general solutions. In
the literature, some solutions [90], [91], [92] utilize HPCs to
model software behavior and detect abnormal operations. In
addition, [91] also utilizes HPCs to identify and authenticate
different devices.

System processors and oscillators: Some devices have hard-
ware components that include a crystal oscillator. As in clock
skew, the manufacturing imperfections of these components
can be utilized to differentiate physical devices by com-
paring their counters drift in time. The main advantage of
this source is its low-level, which enables to differentiate
devices with the same software and hardware. However, the
device should include hardware using oscillators, something
unusual in resource-constrained devices. Moreover, manufac-
turing errors are usually small [58]. In the literature, two
components used for this purpose are the Real Time Clock
(RTC) and the Digital Signal Processor (DSP) [93]. In addi-
tion, the time it takes to execute a particular code or function
can also be used to model system behavior. In this case, this
data has been used to identify device models and the devices
themselves [94].

Resource Usage: In this category, different device com-
ponents usage and status are monitored. Commonly, the
monitored components are CPU, memory, disk, and network.
Various parameters can be extracted from each component,
such as usage percentage or input/output statistics. In terms
of advantages, this source is quite general and can be moni-
tored in many devices and systems. As drawback, continuous
resource usage monitoring consumes many resources. In the
literature, this data is utilized to identify devices [30] and
detect behavior anomalies caused by cyberattacks [21] or
system malfunctioning [36], [49], [95].

Software and Processes: The software deployed in a device
or system also has its particular behavior. Then, the con-
junction of the isolated software behaviors can be utilized to

model a global device behavior fingerprint. As advantage, soft-
ware monitoring can accurately model normal device behavior.
However, this source is affected by system updates and legit-
imate software modifications. Software can be modeled in
several ways:

• System calls and logs: They serve to monitor
the interactions between the programs running on
a device and its operating system. These interac-
tions encompass process, file, and communication
management operations. From the application usage
point of view, system call sequences and logs have
been used to characterize device behavior and detect
anomalies [35], [96], [97], [98], [99], [100], [101].

• Process properties: Device software behavior can be
modeled by monitoring each process properties, such as
name, status, or threads. This category also includes the
resources utilized to execute a particular program or code.
In the literature, this category is commonly monitored
together with resource usage or system calls to detect
anomalous behaviors [102].

• Software signatures: Software snapshots (signatures) are
generated for the different device executable and their
configuration files using hashing algorithms. Then, the
snapshots are used to detect software modifications that
cause behavior anomalies [16], [103].

Device Sensors and Actuators: The data collected in this
dimension is very diverse and depends on the device and sce-
nario typology. The main advantage of this source is that it
can also detect environment failures or attacks. As drawback,
environment knowledge is required to analyze and under-
stand the data from this dimension, as each device may have
different sensors and actuators. From the application usage
point of view, sensor and actuator measurements are utilized
to detect anomalies [8], [20], [89], [104], [105] and model
device types [4], while sensor hardware information is used
to physically identify the devices [106].

To conclude, on the one hand, Table III compares the main
characteristics of data directly collected from the modeled
device. It can be appreciated how HPCs, CPU percent-
age, system calls, software signatures, and sensor values are
used both for device identification and misbehavior detection.
Besides, low-level information related to the system processors
and sensor hardware is only employed for device identifica-
tion. Finally, features related to resource usage and process
properties are only employed in misbehavior detection. On
the other hand, Fig. 3 shows the behavior sources consid-
ered by each device type, and in which application scenario
these sources are utilized. The numbers indicate the total num-
ber of connections each element has. It can be appreciated
that the most extended sources, based on their generality, are
network communications, hardware events, resource usage,
and software and processes.

IV. BEHAVIOR PROCESSING AND

EVALUATION TECHNIQUES

Once reviewed the behavioral data monitored per type
of device and application scenario, the data needs to be
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TABLE III
IN-DEVICE BEHAVIOR CHARACTERISTICS. (DI: DEVICE

IDENTIFICATION. MD: MISBEHAVIOR DETECTION.)

processed to create a fingerprint. This section deals with Q2
(What and how behavior processing and evaluation tasks
are used in each scenario?) by detailing the algorithms and
techniques commonly used in the literature to create and eval-
uate fingerprinting profiles, highlighting their main advantages
and drawbacks. The existing techniques are categorized in
the following five groups: rule-based, statistical, knowledge-
based, Machine Learning and Deep Learning, and time series
approaches. The previous categories are not mutually exclu-
sive and a particular solution can belong to several categories.
Furthermore, the behavior processing can be centralized, in
the own device or a server, or distributed using technolo-
gies such as blockchain [112], distributed [113] or federated
learning [114], among others.

A. Rule-Based

This is the most straightforward approach to create behav-
ioral profiles. It is useful for devices with a well-known
behavior and a reduced set of actions. In this approach, a set
of rules defines how the system should behave, that is, its
behavioral fingerprint. Rules can be defined statically, based

Fig. 3. Behavior sources available in each device type and application
scenarios. (The numbers shown for each item indicate its total number of
connections.)

on pre-defined actions, or dynamically, based on the histori-
cal actions performed by the device. Any deviation from these
rules is considered a fault or anomaly. The main advantages
of this approach are its speed and simplicity. As drawbacks,
it requires previous knowledge about the device behavior, and
it is not suitable for changing and complex scenarios. Rule-
based evaluation is utilized for device type or model definition
and anomaly detection.

For device behavior evaluation, a recent approach is the
usage of Manufacturer Usage Descriptions (MUDs) stan-
dard [115] files, which define the normal device functioning
and are commonly issued by vendors. This method is mainly
utilized for IoT behavior fingerprint generation and evalua-
tion [10], [80]. Another rule-based approach is to explicitly
define the software that the device can execute [103] or
thresholds for resource usage [116].

B. Statistical

In this approach, relatively basic statistical data processing
techniques are utilized to extract inferences (properties) from
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data samples. This approach is usually considered in data pre-
processing and anomaly detection. The main advantage of this
approach is its simplicity and that these algorithms do not
require large datasets. However, it does not handle well multi-
dimensional data, and consistent evaluation decisions require
previous knowledge in the area.

For pre-processing, it is common to infer features using sta-
tistical functions such as average, standard deviation, quartiles,
maximum, or minimum, among others. Regarding evalua-
tion, in some solutions [21], the interquartile range (IQR)
is used as a statistical measure representing the presence
of outliers and anomalies based on data variability (dis-
persion). In the same line, Euclidean Distance is used by
some approaches [9], [57], [89] to determine anomaly val-
ues based on the distance between two data measurements.
Finally, some works [8], [60] utilize Expectation Maximization
algorithm for clustering and parameter estimation based on
statistically-inferred latent variables.

C. Knowledge-Based

This approach aims to represent knowledge extracted from
received data and build a reasoning system capable of inferring
new knowledge. Commonly, the knowledge is built based on a
set of ontologies, and the decision-making process is based on
if-then derivation rules. The main advantages of this approach
are the explainability of the inferred solutions and that it can
solve problems involving incomplete data. As drawbacks, this
approach takes longer time, and it has reduced scalability, as
the system could become too complex if large amounts of data
are utilized.

Knowledge-based approaches are utilized mainly for behav-
ioral anomaly detection, being the main ones look-ahead
algorithms and finite state machines. Look-ahead algorithms
are commonly combined or used to make decisions in more
complicated approaches, such as state machines. Furthermore,
these algorithms are also directly used to detect anoma-
lies [35]. Finite state machines, such as Markov Models [117]
and n-gram models [118], describe the sequential logic fol-
lowed by a certain entity and predict its future status based
on the previous ones. In the literature, they are widely applied
for behavior anomaly detection [10], [16], [35], [92].

D. Machine Learning and Deep Learning

In recent years, and based on the increase of processing
power and available data, Machine Learning (ML) [119] and
Deep Learning (DL) [120] algorithms have gained enormous
relevance in almost every industrial or research area, becoming
the dominating trend for data processing and evaluation. The
main advantages of ML/DL based approaches are their capac-
ity to detect complex data patterns, handle multi-dimensional
and multi-variate data, and adapt themselves to dynamic and
heterogeneous scenarios using massive data. As disadvantages,
the model decisions are usually hardly explainable, based on
the black-box nature of the generated models. Besides, these
algorithms, especially in DL, require large amounts of data
to be trained, and the algorithm training can take much time

and resources. Also, most algorithms require parameter tun-
ing, which implies repeating the training process several times.
Since ML and DL techniques are very diverse, they have been
widely used for device behavior fingerprint generation and
evaluation, both for device identification [4], [13], [14], [50],
[52], [68], [70], [74], [76] and misbehavior detection [5], [15],
[56], [72], [77], [78], [88], [100].

According to the morphology of the data they receive
and the type of predictions they make, ML/DL algorithms
applied in behavior analysis are distinguished into two main
categories: Supervised Learning and Unsupervised Learning.

The goal of Supervised learning is to infer a model capa-
ble of predicting the output of data vectors based on training
labeled data [119]. Supervised algorithms are mainly divided
into classification and regression techniques.

• Classification algorithms try, based on the training data,
to predict the class to which unseen data vectors belong.
Additionally, anomaly detection can be performed using
classification algorithms by labeling the data as nor-
mal/anomaly. Common ML classification algorithms are
Decision Tree (DT) [121], Random Forest (RF) [122],
Logistic Regression (LR) [123], Naive Bayes (NB) [124]
or Support Vector Machine (SVM) [125]. These algo-
rithms are widely utilized for behavior evaluation in
device identification [4], [6], [12], [13], [29], [50], [51],
[52], [70], [71], [75] and behavioral anomaly recogni-
tion [72], [73], [77], [78], [79], [83], [88], [97], [110].

• Regarding Regression algorithms, the output is a con-
tinuous number and not a class. Usual ML regression
algorithms are Linear and Polynomial Regression [126],
which are applied in behavior analysis to evaluate device
behavior and its fluctuation [72].

In Unsupervised learning [119], data vectors are not labeled,
so feature vectors only contain input data. This kind of algo-
rithm is used to extract patterns by modeling probability
densities on the given data. The three main applications of
Unsupervised learning are dimensionality reduction, cluster-
ing, and anomaly detection.

• Dimensionality Reduction algorithms aim to reduce
the number of variables or features under consider-
ation by obtaining a set of principal variables from
the input data. In behavior-based solutions, Principal
Component Analysis (PCA) [127] and t-Distributed
Stochastic Neighbor Embedding (t-SNE) [128] are uti-
lized to speed up computations and derive new fea-
tures [5], [10], [75]. Moreover, dimensionality reduction
is combined with statistical algorithms for anomaly eval-
uation [36], [57], [107], [109].

• Clustering algorithms have the objective of grouping
the input vectors into a different set of objects based
on their similarities. In device behavior fingerprinting,
k-means [129] and Density-based spatial cluster-
ing of applications with noise (DBSCAN) [130]
are usually applied to infer device classes or
types [6], [55], [3], [51], [108].

• Anomaly Detection algorithms seek to identify rare items,
events, or observations based on a set of unlabeled data
points and the assumption that most of the training data
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TABLE IV
BEHAVIORAL PROCESSING APPROACHES COMPARISON

is normal. From this approach, One-Class SVM (OC-
SVM) [131] and Isolation Forest (IF) [132] are widely
used in the literature [7], [34], [133].

From a DL perspective, Artificial Neural Networks
(ANN) [120] are frequently used in the above approaches.
However, a type of architecture cannot be related to a specific
use due to neural networks flexibility, as layers, neurons, and
their connections can be organized in many ways depending on
the problem to be solved. The main types of networks applied
in behavior processing are: Multi-Layer Perceptrons (MLP),
utilized for device identification [29], [76] and anomaly
type classification [79]; Autoencoders, applied for behavior
anomaly detection [18] and dimensionality reduction purposes;
Recurrent Neural Networks (RNN), such as Long Short-
Term Memory networks (LSTM) and Gated Recurrent Unit
networks (GRU), applied from a time series perspective for
device identification [14], [18] and behavior anomaly recogni-
tion [15], [20], [81], [100], [105]; and Convolutional Neural
Networks (CNN), utilized for physical device identification
based on signal processing from a time series approach [14],
[68].

The previous network topologies can be combined to per-
form more complex tasks. For example, some solutions [18]
utilize LSTM layers to build an autoencoder, while other
approaches [82] combine different neural networks to build
Generative Adversarial Networks (GAN) [134].

E. Time Series

Time series analysis utilizes data measurements as a
sequence of values where each measurement is related to the
previous and the next ones. It includes a wide variety of algo-
rithms and models, including the ones based on ML/DL or
statistical algorithms. This approach is utilized both for device
identification and anomaly detection, directly in the model
generation or as data pre-processing. The main advantages of
this approach are its improved performance over single-value
processing approaches. However, it requires a large amount
of data to detect the temporal patterns, and the processing is
time-consuming.

Time series analysis methods are divided into two different
types, frequency-based methods, which analyze data as a sig-
nal with a certain frequency, and time-based methods, which
analyze data evolution with respect to time.

In terms of frequency-based methods, Fourier Transform
(FT) [135], and derived functions, are applied as pre-
processing to obtain the frequencies that form the value
signal [6], [91]. From time-based methods, AutoRegressive

Fig. 4. Yearly and global distribution of processing techniques used by device
behavior fingerprinting solutions.

Moving Average (ARMA) and derived algorithms are used
in behavior prediction applications [9], [49]. In addition,
Dynamic Time Warping algorithm is also utilized in device
behavior evaluation [30], directly comparing the values of two
time series.

Besides, as stated before, Deep Learning has been applied
in behavioral data evaluation from a time series perspec-
tive utilizing RNNs [15], [18], [20], [81], [100], [105] and
CNNs [14], [68].

Table IV compares the main properties of the five behavior
processing approaches identified in the literature analysis. As
general conclusion, when the behavior of the device is com-
posed of a limited and known number of actions and there is
not a large number of dimensions in the data, the appropri-
ate approaches would be those based on rules and statistical
algorithms, given their reduced complexity and resource con-
sumption. However, when the data features maintain complex
relationships between them, the most suitable solutions are
those based on knowledge and ML/DL approaches. Finally,
when there is a relationship between the different measure-
ments based on their order, a time series approach may provide
improved results. Depending on the amount of data, the avail-
able resources, and the complexity of the feature correlations,
some particular algorithms are better than others. For example,
a simple IoT device, like a bulb, with a limited and known
set of actions, can be modeled with a rule-based approach,
leveraging its limited resources. In contrast, a cloud service
that executes different tasks would be hard to model using
rules, instead, an ML/DL-based approach exploiting the cor-
relations in the sources available would be more successful.
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TABLE V
COMMON EVALUATION METRICS CONSIDERED BY DEVICE BEHAVIOR

FINGERPRINTING SOLUTIONS

Overall, Fig. 4 shows the global and per year distribution of
works using each technique, note that some works may utilize
techniques belonging to more than one category. ML and DL
rise as the leading group of processing techniques applied to
device behavior fingerprinting, as it is already the main trend
in the area and is still gaining even more prominence.

Additionally, to properly evaluate and compare the solutions
performance, it is critical to define relevant metrics. Then,
independently of the evaluation approach followed, there is
a set of common metrics utilized in the majority of behavior-
based solutions. Table V shows these common metrics. In the
case of classification approaches, these metrics are based on
the values present on a confusion matrix, while in the case
of regression approaches, the metrics are based on prediction
errors [11], [136]. Moreover, some solutions also consider
factors such as detection time or resource usage.

V. BEHAVIOR-BASED SOLUTIONS AND APPLICATIONS

After analyzing the processing and evaluation techniques
used in device fingerprinting (Q2), and the scenarios, devices,
and data sources (previously, with Q1), we have the back-
ground needed to review and understand device behavior-
based solutions. In this sense, this section performs an in-depth
review of the most relevant works of the literature that deal
with behavioral fingerprinting to answer Q3 (What charac-
teristics do the most recent and representative solutions of
each application scenario have?). The analysis of each solu-
tion considers the application scenario, device type, behavior
source, data monitored, processing and evaluation algorithms,
and results criteria. We give particular importance to IoT
devices because of their role in current real-world deploy-
ments. Still, it is important to note that other devices could
be fingerprinted considering the same data sources. Below, the
approach followed by each solution is detailed and grouped
by application scenario and behavior source.

A. Device Type or Model Identification

In this application scenario, we review solutions whose
objective is to identify device models or types. Devices
belonging to the same model or type are treated as equals
by the literature. The main characteristics, algorithms and
performance of each solution are compared in Table VI.

1) Network-Based Identification: Many works in the area
of device type or model behavior fingerprinting address the
identification problem from a network analysis perspective,
deriving statistical features for ML/DL technique applica-
tion. Furthermore, they are mainly focused on IoT and ICS
devices differentiation, as this section shows. In this con-
text, the authors of [71], proposed two fingerprinting methods
for ICS device models. The first was based on the response
time between a TCP acknowledgment and the application
layer response, once the data had been processed. The sec-
ond method used physical operation times by measuring the
time elapsed to apply some actions in an actuator. In [12],
Miettinen et al. proposed IoT Sentinel, an IoT device type
identification approach based on device setup network com-
munications. The main goal of this work was to recognize
potentially vulnerable device types and enhance their secu-
rity based on rules. Packet headers were analyzed to derive
features resilient to traffic encryption.

Bezawada et al. [52] also presented a network-
based methodology to perform behavioral fingerprinting
and device type identification inspired in SIP-based
fingerprinting [137], [138]. A behavior model data was
divided into static, based on the header protocols used by the
IoT device, and dynamic, based on flow sequences and packet
payloads. By following the same direction, Shahid et al. [75]
identified different IoT device types using bidirectional flow
characteristics. Four different device types were utilized:
sensor, camera, bulb, and plug.

Also dealing with device type or model identification,
the authors of [13], utilized ping operations to generate a
fingerprint of different IoT devices to distinguish real embed-
ded machines from virtual and emulated embedded systems.
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TABLE VI
DEVICE TYPE OR MODEL IDENTIFICATION SOLUTIONS BASED ON DEVICE BEHAVIOR FINGERPRINTING

Several devices were grouped in each category to make them
diverse enough to model previously unseen devices. For each
ping, time-based statistical features were calculated using ping
requests separated by 0.2 seconds. Oser et al. [29] utilized
TCP timestamps to measure the clock skew of different IoT
device models and identify them. 562 devices of 51 differ-
ent models were utilized for classification-based testing. Using
only clock skew, the system could not identify most of the
devices. Then, the authors decided to utilize 12 additional fea-
tures derived from the timestamps gathered to calculate the
clock skew. Thangavelu et al. [51] proposed DEFT, a dis-
tributed device fingerprint and identification system. In this
approach, SDN network gateways performed device moni-
toring and classification locally, while a centralized control
entity generated and distributed the classifiers. Statistical fea-
tures were extracted based on packet headers and application
layer protocols, and grouped in 15-minutes sessions. To iden-
tify new device types, clustering algorithms (k-means) were
applied. Similarly, Perdisci et al. [85] analyzed DNS appli-
cation protocol to derive IoT model fingerprints following a
document retrieval-based approach.

Another relevant work in the scenario of IoT device
model identification was proposed by Marchal et al. [6].

The authors presented AuDI (Autonomous IoT Device-Type
Identification), a system designed to identify IoT device type
by passively analyzing its periodic network communications,
grouping them using clustering algorithms. To recognize peri-
odic flows, Discrete Fourier Transform (DFT) was applied
to candidate periods, transforming time domain to frequency
domain. Then, 33 different features were calculated for each
period. Similarly, Arunan Sivanathan et al. [4], [136] worked
on device type classification. In this case, packet and flow-
based statistical features were utilized to perform device
classification and behavioral monitoring tasks. Using the same
dataset, Msadek et al. [53] focused on encrypted traffic
analysis to identify IoT device models. In this work, the
authors derived statistical features from headers using a sliding
window.

In the same direction, OConnor et al. [50] proposed
HomeSnitch, a framework designed to classify home IoT
devices communication by semantic behavior (e.g., firmware
update/check, audio/video recording, data uploading). To build
application-level models from packet headers, HomeSnitch
used adudump [139] traffic analysis tool. After that, 13 dif-
ferent features were extracted to describe application data
exchanges. The authors used YourThings dataset [140] for
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solution testing. Similarly, Trimananda et al. [84] proposed
Ping-Pong, a tool designed to extract packet-level signatures
for events (e.g., light bulb turning ON/OFF) based on device
model. This work covered traffic encryption and unknown
proprietary protocols by applying a clustering-based approach
over statistical packet analysis. Furthermore, Hafeez et al. [55]
proposed IoT-KEEPER, a system for both identify device types
and detect malicious activities using an unsupervised approach
based on fuzzy C-means clustering and interpolation.

Applying more sophisticated DL-based solutions,
Ortiz et al. [18] presented DeviceMien, a probabilistic
framework for device identification which considered stacked
LSTM-autoencoders to automatically learn features and
classes from raw TCP packets. Then, the system modeled,
using DBSCAN, each device as a distribution of the generated
classes. For testing, the authors used two different datasets,
one public, [4], and another private. Kotak and Elovici [76],
as a novel approach, performed a pre-processing step that
converted the TCP network traffic (pcap format) to grayscale
images. Then, an MLP was utilized to classify different
device flows based on the device type. The dataset utilized
was from [4].

Another research line covering device identification is based
on the analysis of deployment scenarios such as Smart Homes
or agriculture networks [141], [142]. Kumar et al. [143]
analyzed home networks in order to perform device type iden-
tification and security analysis. In total, 83M devices deployed
in 16M households were collected, analyzing their distribution
and known vulnerability issues. In a device subset, a 96%
accuracy was achieved using expert rules and an ensemble
of RF classifiers trained using data from different application
layer protocols. Another smart home device analysis was per-
formed by Huang et al. [144]. However, device categories were
only manually standardized in this study, mentioning device
type identification and anomaly detection as future work paths.

Digital forensics has also leveraged device identification
when it helps in forensic investigations, as the increasing
number of devices generates new challenges and motivates to
work on more advanced identification methods [145], [146].
One example of these scenarios is Amazon Alexa ecosystem
forensics [147], [148], where the behavior-based identification
of the devices present in the scenario is a highly valuable
asset. Moreover, the digital forensics field is also leveraging
new technologies such as blockchain when dealing with large
scenarios such as IoT environments [149].

2) Radio-Based Identification: Drone model identification
is the main research area where radio behavior fingerprint-
ing is employed for type or model identification. Although
this problem has been traditionally addressed based on phys-
ical characteristics, such as images [150], RADAR and
LIDAR [151], or sound [152] (out of the scope of this study),
there is an emerging research line based on radio analysis and
fingerprinting. A relevant work presented by Ezuma et al. [64]
analyzed controller signals to classify unmanned aerial vehi-
cles (UAV). In the same line, Al-Sa’d et al. [65] used DNNs to
classify drone models based on their radio communications.
Using the same dataset, Allahham et al. [66] improved the
previous results using a 1D CNN. Similarly, Basak et al. [67]

also applied CNNs for drone identification but using their own
dataset, which will be published in the near future.

Table VI compares the solutions focused on device type
and model identification. From the previous solution analysis,
we can observe that the device type and model identification
application scenario has been mainly covered from a network
communication perspective. Moreover, it is noticed that most
of the solutions in this area are focused on IoT, as the het-
erogeneous nature of IoT devices motivates the usefulness
of solutions capable of distinguishing devices according to
their type and model. Many solutions achieve classification
results over 99% in accuracy and F1-Score metrics, which
indicates that this area is relatively covered by approaches
with good performance. Besides, drone identification is the
main application of radio-based fingerprinting for model iden-
tification. Here, further research is still required to achieve
similar performance to network-based identification.

B. Individual Device Identification

This section analyzes behavior-based solutions focused on
identifying the device itself. It means that they differentiate
devices with the same hardware/software. At this point, it is
important to note that these approaches will also be able to
distinguish different device types and models (the previous cat-
egory), and this fact is also considered and evaluated in some
of them. In these solutions, features usually have a lower level,
related to hardware components, trying to differentiate fabrica-
tion variations on the device components. Table VII compares
the main characteristics, algorithms applied and performance
of solutions detailed in this subsection.

1) Processor-Based Identification: In this category,
Salo’s [93] proposed a fingerprinting software method
capable of differentiating identical personal computers using
quartz crystals characteristics. Concretely, the author utilized
the CPU Time-Stamp Counter (TSC), the Real-Time Clock
(RTC), and the Sound Card Digital Signal Processor (DSP).
The solution aimed to verify how accurate the RTC and DSP
were in terms of CPU cycles by measuring the one-second
ticks of the RTC and the time needed by the DSP to
process one second of audio. Then, statistical analysis was
applied to distinguish computer pairs between them. Also
exploiting processor differences, but based on execution time,
Sanchez-Rola et al. [94] proposed CryptoFP, a novel approach
to identify machines with the same software and hardware
through the generation of a fingerprint using the time taken to
execute a specific function. This fingerprint was generated by
executing the same function many times, repeating different
parameters to model its time variability. In the fingerprint
comparison, the tool compared the most frequent (mode) time
values for each call parameter over all iterations. The authors
conducted several experiments to test long-term fingerprint
stability, and CPU workload and temperature impact in the
fingerprint generation. For future work, the authors considered
solution scalability as fingerprints are compared one by one.
Finally, Lorenz et al. [154] considered embedded circuits
of IoT sensors for unique fingerprinting. To perform the
fingerprinting, predefined voltage sequences were supplied
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to the sensor, monitoring how its output varies. Fingerprints
were evaluated directly comparing output sequences and using
RMSE as error measure. Results in individual identification
varied according to sensor model, meaning that some models
have more fabrication variability that others.

2) Clock-Based Identification: Based on clock skew capa-
bilities, Jana and Kasera [60] worked on uniquely differentiate
wireless access points (AP) based on the clock skew calculated
from their beacon frame timestamps. This work utilized the
uw/sigcomm2004 dataset [155]. The results, using Expectation
Maximization statistical algorithm to compare AP frames,
indicated that clock skew seems to be an efficient and robust
fingerprinting method capable of detecting different WLAN
APs. Similar results to the previous ones were presented by
Sharma et al. in [62]. In this case, the authors utilized TCP and
ICMP timestamp headers to calculate the clock skew between
two devices, validating the work of Kohno et al. [59]. They
tested their approach with 210 different devices, some of them
identical, finding that they were able to distinguish both dif-
ferent and identical devices. Besides, they also tested clock
skew stability based on the measurement methodology and on
several environmental factors, such as temperature or operat-
ing system. Based on these results, the authors concluded that
this approach is suitable for moderate size networks.

Focused on wireless unique device identification,
Lanze et al. [61] considered clock skew stability and
uniqueness. To measure the clock skew, the authors took
the timestamps from a wireless AP (sender) sent in wireless
beacons and the timestamps from the measuring wireless
client (receiver). To carry out their experiments, they gathered
clock skews using five different laptops from 388 different
APs. Through their experiments, they concluded that all
clock skews were in a rather short range (±30 ppm) due to
restrictions of the suppliers’ quality specifications. Therefore,
although the clock skew restricts the set of possible devices,
it cannot serve as a unique fingerprint for a wireless access
point and has to be enriched with other features to achieve
uniqueness. In the same line, Radhakrishnan et al. [74]
published GTID, a system for individual wireless device and
device type fingerprinting based on clock skew. This approach
utilized clock skew and communication patterns to generate
device signatures from a DL-based time series approach.
The system was tested using a previous dataset of the team
[156], [157], collected from 37 different devices, including
some repeated models. Similarly to [61] and [74], Polčák and
Franková [58], [63] also discussed clock skew performance
when uniquely identifying different devices. Here, the authors
concluded that clock skew is not completely stable. Besides,
based on the clock skew distribution of the evaluated devices,
the authors claimed that clock skews are distributed close to 0
ppm. These factors prevent a quick fingerprint technique to be
capable of uniquely differentiate devices in large scenarios.
Finally, the authors also discussed and demonstrated the
possibility of masquerading or falsifying the clock skew. The
authors concluded that this technique might be suitable for
small networks or in combination with additional data.

3) Resource Usage-Based Identification: Resource usage
was exploited for individual identification in [30]. In this work,

the authors developed a fingerprinting method based on the
CPU usage graph when the device is executing a fixed task.
For this purpose, a benchmark program that included several
read/write operations and calculations was developed. In the
evaluation process, the graph was compared to the previous
ones of the same device using the Dynamic Time Warping
algorithm. The percentage of stable fingerprints was calcu-
lated using the Shannon entropy and stability measurement,
achieving a 93.43% of unique fingerprints.

4) Electromagnetic Signal-Based Identification: Other
works solved the identical device identification problem using
electromagnetic signals as data source. Using radio signals,
Jafari et al. [14] used DL techniques to identify wireless
devices and distinguish among identical wireless devices from
the same manufacturer. The authors used ZigBee devices from
which a historical radio frequency trace dataset was obtained.
In total, six identical devices were employed in the tests, con-
cluding that it was possible to identify devices based on their
radio frequency traces, even if they were from the same model.
A similar approach was addressed in [68], where Riyaz et al.
utilized raw radio samples to build a unique device signa-
ture using Software Defined Radio (SDR) transmissions. This
solution was tested on 5 identical devices. In addition, the
authors analyzed how detection accuracy is impacted by mea-
suring distance, concluding that classification performance
starts to degrade at 34 feet. Finally, Cheng et al. proposed
in [70] a method capable of identifying identical laptops and
smartphone devices (also different models) based on the elec-
tromagnetic signals radiated from the CPU. As a drawback,
this solution requires the use of an external sensor to measure
the CPU radiated signals within a 16 mm range.

Table VII compares the solutions focused on individual
device identification. As a general view of individual device
identification solutions, it can be appreciated that solutions
are focused on general computers and wireless devices. This
ensures solution universality, but opens the door to future per-
spectives focused on more specific device types such as IoT
or ICS. It is also noticed the lower-level nature of the behavior
sources utilized, which in this case are mainly based on clock
and processor properties, and electromagnetic signals. Many
solutions achieved high individual identification performance.
However, many of these approaches noticed scalability issues
in large device deployments, as fabrication variations are
limited within determined quality standards.

C. Attack Detection

The third main scenario where behavior fingerprinting is
highly relevant is attack detection. Abnormal situations can
have a wide range of forms, such as network attacks, malware,
malicious firmware modifications, or unauthorized user inter-
actions. Detection can be performed either modeling normal
device behavior and detecting deviations, from an anomaly
detection standpoint, or collecting normal and abnormal
labeled data and performing classification tasks. Table VIII
compares the main characteristics, algorithms applied and
performance of solutions detailed in this subsection.
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TABLE VII
INDIVIDUAL DEVICE IDENTIFICATION SOLUTIONS BASED ON DEVICE BEHAVIOR FINGERPRINTING (WORKS ARE GROUPED BY BEHAVIOR SOURCE,

USING DOUBLE HORIZONTAL LINES TO SEPARATE THEM, AND SORTED BY YEAR)

1) Network-Based Attack Detection: The most exploited
source in terms of behavior-based attack detection is network
monitoring. Many solutions, mainly focused on IoT [5],
[7], [9], [10], [15], [34], [56], [72], [77], [78], [87], [88],
[158] but also on SDN/NFV [79], [80] and general comput-
ers [73], [81], [82], [83], have utilized this source for attack
detection.

One of the leading research lines focuses on detecting
attacks that deploy unauthorized devices in the environment.
In [78], the authors worked on unauthorized IoT device detec-
tion using white lists and classification ML algorithms. TCP/IP
flows were used to extract features capable of characterizing
nine different types of devices (17 distinct IoT devices were
used). This work also discussed the system resilience to cyber-
attacks. Similarly, in [77], the authors used packet headers and
payload data to extract flow-based features capable of creating
device type fingerprints. Then, unknown or suspicious devices
with abnormal behavior could be identified, and their com-
munication restricted for further monitoring. The dataset used
for testing came from IoT Sentinel [12]. In the same line,
Ferrando and Stacey [9] built a behavior profile of IoT devices
based on entropy and dispersion of metrics related to IP direc-
tions, ports, bytes received/sent, and latency. Anomalies were
detected based on the distance between the average values and
the ones being evaluated.

In contrast, the majority of works in this area cover the
detection of direct cyberattacks, both common ones such as
flooding or port scans, and more sophisticated ones like DDoS,
botnets or ransomware. Amouri et al. [72] proposed an IDS based
on IoT device network behavior. This system had a distributed
architecture composed of traffic sniffers in the local network

and a central super node. Device behavior was built on packet
counters determined by MAC and network layer data. The
proposed architecture applied DT algorithm to classify network
instances, and then Linear Regression to generate time-based
device profiles relying on the measure of behavior fluctuation.

Also from an ML-based perspective, Sivanathan et al. [5]
addressed behavioral changes and attack monitoring based
on flow and packet network analysis and clustering. The
authors tested both direct network attacks (ARP Spoofing,
Ping of Death, TCP SYN flooding, and Fraggle) and reflec-
tion attacks (Smurf, SNMP, SSDP, and TCP SYN reflection).
A similar approach was followed in [88], where the authors
performed attack and anomaly classification using MQTT pro-
tocol traces gathered from DS2OS dataset [159]. In the same
line, Filho et al. [73] presented an approach for detecting
DoS/DDoS attacks using ML techniques. The authors built
a customized attack dataset based on several public datasets
(CIC-DoS, CIC-IDS2017, and CIC-IDS2018 [160]) to bench-
mark normal traffic and different DoS/DDoS classification.
The solution presented in [81] also considered network traffic
data extracted from the CIC-IDS 2017 [160] dataset, but in this
case for an unsupervised anomaly detection approach. Here,
traffic sequences were modeled in sliding windows that were
fed to an LSTM network. Similarly, traffic-based anomaly
detection is covered by a wide variety of other works using
anomaly detection approaches [79], [87].

A different view was provided by Yin et al. [82], who
applied DL for botnet behavior modeling and detection. This
solution was based on a GAN that generates simulated data,
augmenting the model trained with the original data. The
authors utilized network flows derived from ISCX botnet

Authorized licensed use limited to: Pedro Miguel Sanchez Sanchez. Downloaded on May 08,2023 at 10:31:47 UTC from IEEE Xplore.  Restrictions apply. 

A Survey on Device Behavior Fingerprinting: Data Sources, Techniques,
Application Scenarios, and Datasets

18 PhD Thesis – Pedro Miguel Sánchez Sánchez



1062 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 23, NO. 2, SECOND QUARTER 2021

dataset [161] as benchmark. Also focused on botnet attacks,
Blaise et al. [56] presented a bot detection technique based
on host behavior. This solution was divided into three steps:
characterizing the host behavior based on network signatures
(aggregated attribute frequency distribution), inferring benign
host behavior using clustering algorithms (DBSCAN), and
classifying new hosts based on previously labeled instances.
To validate the approach, the authors used the CTU-13
dataset [162]. On similar research paths, Maimó et al. [158]
analyzed ransomware detection based on behavior analysis in
Medical Cyber-Physical Systems. This work analyzed network
flows extracting different statistical features. Then, anomaly
detection and classification ML models were combined to
evaluate the live generated vectors.

In another line, some authors have proposed the usage of
Manufacturer Usage Descriptions (MUDs) to enhance IoT
security. In Hamza et al. [10], flow counters were used
to generate feature vectors, applying PCA and k-means for
dimensionality reduction and clustering, respectively. Then, an
approach based on boundary detection and Markov Chains was
applied for MUD monitoring and anomaly detection, testing it
on several network attacks such as ARP spoofing, TCP SYN,
and UDP flooding or reflection attack. Another approach using
MUD to improve IoT security was proposed by Afek et al.
in [80]. From an NFV perspective, this proposal presented a
hybrid approach where MUD compliance checking is a service
implemented as a virtual network function (VNF), and traffic
monitoring is implemented on the network gateway to ensure
P2P communications. For devices with no MUD, the authors
used the algorithm proposed in [163] for MUD generation.

Additionally, other works also apply trust-based approaches
to their solutions, increasing the granularity of the evaluation.
Haefner and Ray presented ComplexIoT in [7], a behavioral
framework designed to evaluate each traffic flow in an IoT
device and calculate a trust score for it. The authors collected
traffic of 25 devices approximately (general computers, smart-
phones, IoT devices). Based on the Flow Trust Score of each
connection, calculated using IF, different policies and rules are
applied to mitigate possible attacks. This solution is deployed
on an enforcement architecture as an SDN environment based
on OpenFlow.

From a distributed perspective, the authors of [15] used fed-
erated learning to build DÃŔoT, an autonomous self-learning
distributed system for detecting compromised IoT devices. The
system created communication profiles for each device based
on network packets and flows. Then, an anomaly detection-
based approach was applied to detect changes in the device
behavior caused by network attacks (Mirai botnet). The archi-
tecture was deployed using a network gateway (router) as
the Anomaly Detection component. Besides, an IoT Security
Service was in charge of maintaining a repository of GRU
models. Another DL-based distributed solution was proposed
in [34], in which Ali et al. submitted an IoT device behav-
ior capturing system powered by blockchain and designed to
enable trust-level confidence to outside networks. The authors
deployed a Trusted Execution Environment (TEE) [164] to
provide a secure execution environment for sensitive code
and blockchain data. The data came from the N-BaIoT

dataset [165] and contained network features related to benign
and botnet attack flows. Also from a distributed perspective,
in [83], the authors proposed a behavior anomaly detection
system based on network traffic. Here, the data was stored
using a Hadoop Distributed File System (HDFS), and the
processing was based on distributedly training a Deep Belief
Network (DBN) and a stacked layer SVM using Apache Spark.
The system was tested using different datasets, (KDD99 [166],
NSL-KDD [167], UNSW NB-15 [168], CIC-IDS 2017 [160]).

2) Sensor-Based Attack Detection: Regarding sensor mea-
surements to detect attacks, the main solutions based on
this approach are applied to IoT and ICS environments
[20], [89], [104], [105]. Pacheco and Hariri [89] focused on
IoT sensor behavior analysis to detect common attacks such
as DoS, Flooding or Impersonation. This approach recog-
nized previously known and unknown attacks by calculating
Euclidean distance from normal sensor measurements. The
authors of [20] performed anomaly detection in cyber-physical
systems (CPS), using GANs and time series data. From this
perspective, the authors built an unsupervised GAN framework
based on LSTM networks , which was tested using SWaT
dataset [169], WADI dataset [170], and KDD99 dataset [166].

Similarly, Neha et al. [105] proposed a behavioral-based
IDS for ICSs, in this case for SCADA systems. This
approach applied RNNs to detect cyber-physical attacks. The
model received sensor measurements gathered from the SWaT
dataset [169]. Zhanwei and Zenghui [104] also proposed an
anomaly detection system for ICSs, but based on the behavior
of the data sequences from the industrial control Modbus/TCP
network traffic. The authors tested their system both in a
simulated water tank scenario and in a real chemical mix-
ing infrastructure, utilizing sensor measurements to generate a
behavior model and predict future behavior.

3) System Calls, Logs, and Software Signature-Based
Attack Detection: Other solutions rely on system calls, execu-
tion logs, and software signatures to model device activity
and detect attack situations [35], [96], [97], [99], [103].
These solutions cover a wide range of device types, including
resource-constrained devices, general computers, and cloud
systems.

Based on system call collection and processing, Gideon
Creech [96] developed an IDS based on system call patterns.
The authors utilized a semantic approach over the system
call traces to understand running programs and detect anoma-
lies utilizing an Extreme Learning Machine (ELM). A Linux
system was monitored under different types of vulnerabil-
ity exploitation attacks, and the dataset was made publicly
available as ADFA-LD [96]. Also covering cloud intrusion
detection using system calls, in [98], the authors developed a
HIDS for cloud environments that utilized system calls to build
a normal behavior profile based on Term Frequency-Inverse
Document Frequency (TF-IDF). Then, ML-based classifiers
were employed to recognize the attacks. Following similar
paths, Liu et al. [99] developed a general IDS based on system
call TF-IDF statistical patterns derived from n-gram models.
In [97], Deshpande et al. also faced cloud computing intrusion
detection based on system calls using ML classifiers and call
frequency vectors.
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From a different perspective, Attia et al. proposed in [35]
an adaptive host-based anomaly detection framework for
resource-constrained devices. The designed use case targeted
the detection of malicious updates on Android applications.
It generated a normal behavioral model for each moni-
tored application using n-gram language models. Additionally,
He et al. [103] proposed BoSMoS, a distributed software
status monitoring system for Industrial IoT (IIoT) enabled
by blockchain. To accomplish its goal, the system stored a
snapshot of the device software in the blockchain and then
monitored its system file calls. This solution was executed in
300s intervals, so modified software did not run for more than
these 300s. Finally, the authors also tested solution scalability,
performance, and security.

4) Hardware Event-Based Attack Detection: Apart from the
behavioral data considered by the previous solutions, other
works such as [90], [91], [92] used Hardware Performance
Counters (HPC) to model system behavior. These solutions
focused on resource-constrained devices such as embedded
systems and IoT devices. In [90], the authors presented
ConFirm, a technique to identify device behavior and detect
malicious modifications in the firmware of embedded systems
using HPCs. Deviations, based on execution paths, were cal-
culated to evaluate the system performance. The proposal was
tested on ARM and PowerPC embedded processors, verifying
that the solution was able to detect all the tested modifi-
cations with low resource overhead. In [92], Golomb et al.
proposed CIoTA, a lightweight framework using blockchain
to perform distributed and collaborative anomaly detection in
resource-constrained devices. In this solution, an Extended
Markov Model (EMM) captured an application control-flow
asynchronously using HPCs. Attack informing blocks were
submitted to the blockchain (validated by neighbor devices)
to ensure that an attacker cannot exploit a large number of
devices within a short period of time. The system was tested in
an IoT platform composed of 48 Raspberry Pi simulating smart
cameras and lights. An exploit was executed to simulate a bot
behavior in some devices. The authors also mentioned some
countermeasures, such as alerts, service restart, or poweroff.

Ott and Mahapatra [91] utilized HPCs and their occurrence
frequency to enable continuous authentication of embedded
software. For this purpose, the HPCs streams were pro-
cessed using Short-Time Fourier Transforms (STFT) to extract
frequency information. The authors discussed the usage of
classifiers; however, they considered these models too heavy
for embedded systems and chose to build their own authen-
tication algorithm based on cyclic redundancy check (CRC)
function and state machines.

5) Resource Usage-Based Attack Detection: An alterna-
tive approach to detect anomalies caused by attacks con-
sists in resource usage monitoring [3], [11], [21], applied
mainly in cloud and container systems. Shone et al. proposed
in [3] a misbehavior monitoring solution for DoS detection
in cluster-based systems. This solution utilized resource usage
metrics together with process and file modification monitor-
ing to model the system behavior. Anomaly detection was
addressed based on thresholds, clustering, and statistical simi-
larity calculation. Similarly, Barbhuiya et al. proposed in [21]

a DDoS and cryptomining attack detection framework for
cloud data centers. The solution, called RADS (Real-time
Anomaly Detection System), monitored CPU and network
utilization as a time series for anomaly detection. Then, differ-
ent window-based approaches were applied to perform attack
identification based on IQR Spike detection analysis. For test-
ing, a real-world dataset was gathered from Bitbrains data
center [171].

Additionally, some works have also covered attack counter-
measure actions. In this line, the authors of [11] presented
an anomaly detection mechanism based on resource behavior
designed to identify when a cloud system should be auto-
scaled. To detect anomalies, an AutoRegressive (AR) model
was trained using CPU usage statistics, and the prediction
error on the test dataset was used as anomaly measurement.
The system was only tested using two DoS and stress attacks,
detecting both of them.

The main characteristics of the attack detection solutions
are summarized in Table VIII. Based on the attack detection
solution analysis, we can claim that attack detection is the
most varied behavior application scenario. Although network
is the most used source, others such as system calls or resource
usage also have notable relevance. The same heterogeneous
distribution can be observed regarding processing and eval-
uation approaches, having a balance between classification
and anomaly detection. The concrete sources and techniques
applied are related to the type of attacks addressed. Thus,
although many solutions achieved successful results, the rapid
evolution of attack techniques leads to the need for new future
solutions in this area.

D. Malfunction and Fault Detection

The last behavior application scenario identified is malfunc-
tion and fault detection. In these solutions, the purpose is to
detect faulty devices or malfunctioning components based on
device behavior changes. This approach has been applied to
several device types, such as IoT [57], [86], ICSs [8], NFV
systems [49], [95], [100], [108], general computers [101],
cloud systems [36], [107], and containers [16], [109], [110].
Table IX compares the solutions detailed in this subsection.

1) Network-Based Fault Detection: Choi et al. [86]
addressed faulty IoT device identification based on behavior
fingerprinting from sensor data and its correlation. This solu-
tion was named DICE, and it was installed in the network
gateway to extract context from application-layer communi-
cations and generate statistical features for a vector distance-
based evaluation. In the same line, Spanos et al. [57] proposed
a security solution based on the generation of behavioral
templates using the IoT device network communications.
PCA dimensionality reduction and DBSCAN clustering were
applied to the network data to detect abnormal devices. Based
on Euclidean distance, devices located far from a cluster cen-
ter generated an alert and triggered some mitigation actions.
This proposal was validated under simulated physical damage
and mechanical exhaustion anomalies.

2) Sensor-Based Fault Detection: Sensor data has
also been applied in the literature for fault detection.
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TABLE VIII
MAIN ATTACK DETECTION SOLUTIONS BASED ON DEVICE BEHAVIOR FINGERPRINTING (WORKS ARE GROUPED BY BEHAVIOR SOURCE, USING

DOUBLE HORIZONTAL LINES TO SEPARATE THEM, AND SORTED BY YEAR)

In this line, Manco et al. [8] explored ICS fault detec-
tion based on sensor stream data analysis. The system
performed window-based processing to obtain statistical

features, and then clustering to build classes from unla-
beled data. Finally, outlier detection was performed
to distinguish failures using Expectation Maximization
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TABLE IX
MAIN MALFUNCTION AND FAULT DETECTION SOLUTIONS THAT USE DEVICE BEHAVIOR FINGERPRINTING (WORKS ARE GROUPED BY BEHAVIOR

SOURCE, USING DOUBLE HORIZONTAL LINES TO SEPARATE THEM, AND SORTED BY YEAR)

algorithm. This approach was tested in train door failure
detection.

3) System Log-Based Fault Detection: From the system
log perspective, in [100], the authors applied a multimodal
LSTM network approach to perform anomaly detection in
NFV microservices based on distributed execution traces.
Kubacki and Sosnowski [101] explored abnormal behavior
detection based on system logs related to performance metrics.
The authors performed a pulse-oriented time series analy-
sis to characterize periodical behaviors and detect anomalies
using a self-developed algorithm called PANAL. The corre-
lation between metrics was evaluated on real logs, finding a
high correlation during anomalous situations such as truncated
cyberattacks or data backups.

4) Resource Usage-Based Fault Detection: In the malfunc-
tion and fault detection scenario, the most common data source
is resource usage, especially for fault finding in cloud and con-
tainer systems. In this context, Gulenko et al. [95] proposed an
anomaly detection architecture for large-scale NFV systems.
In this proposal, different resource usage metrics were col-
lected from each host in short time intervals. To process the
data, the architecture used techniques based on online unsu-
pervised clustering and classification algorithms. The authors
claimed that the preliminary evaluation showed a high degree
of reliable recognition of pre-defined failure scenarios. In addi-
tion, Sorkunlu et al. [109] published a method to track the
behavior of a cluster system based on its resource usage. Data
was organized into three-dimensional tensors (compute nodes,
usage metrics, and time). To measure behavior changes, data
was grouped in ten-minute time windows and dimensionality
reduction algorithms were applied. Finally, the reconstruction
error was measured. In [49], by the same team as [95], the

authors proposed an unsupervised detection approach using the
Online ARIMA forecasting algorithm [174]. This model was
based on predicting the next expected values and comparing
them with the actual ones. The authors introduced con-
trolled anomalies, such as disk pollution, or HDD, CPU, and
memory stress and leak, being able to recognize all of them.
This team also addressed black-box service modeling [108]
based on clustering to detect functioning anomalies like
in the previous work. The used clustering algorithm was
BIRCH [175].

Following a similar approach, Wang et al. [36] proposed a
self-adaptive monitoring architecture for online anomaly
detection in cloud computing. The system gathered
performance metrics from different sources such as CPU,
Network, Memory, and Disk. To calculate anomalies, the
PCA-based eigenvector of the metrics was compared to the
standard eigenvector. The adaptability could be achieved
by adjusting a sliding window based on the estimated
anomaly degree. A similar line to this work was covered by
Agrawal et al. [107], where similar features were collected
and PCA was used as dimensionality reduction algorithm.
Besides, Du et al. [110] proposed a framework to monitor and
classify anomalous behaviors in microservices and containers.
Different anomalies, such as high CPU consumption or
memory leak, were injected, and the generated data was
labeled for using ML classifiers. Finally, Samir and Pahl [16]
utilized hierarchical hidden Markov models (HHMM) to
detect anomalies in container clusters. HHMM model was
compared with Dynamic Bayesian Network and Hierarchical
Temporal Memory to detect resource exhaustion and work-
load contention, achieving the best results in three different
generated datasets.
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Fig. 5. Distribution graphs of device behavior fingerprinting solutions.

Table IX compares the main characteristics and results of
the solutions focused on fault and malfunction detection. From
the description of the previous solutions, we can observe that
resource usage and system logs are the most used behavior
source for fault detection, especially in NFV, cloud, containers,
and microservice systems. In contrast, IoT devices and ICSs
faults have been solved based on a network and sensor-based
perspective. Moreover, most of the solutions are focused on
anomaly detection-based evaluation, instead of using labeled
data. Finally, Fig. 5 shows the distribution of the analyzed
solutions regarding their application scenario and behavior
source, and their publication year.

VI. PUBLIC DATASETS

To address Q4 (Which behavior datasets are available and
which are their characteristics?), this section reviews the
main public datasets containing device behavior activities and
characteristics found in the literature. Specifically, it analyzes
datasets contemplating the scenarios, devices and sources dis-
cussed in Q1, allowing validating most of the techniques
presented in Q2, and studying the scope of the solutions ana-
lyzed in Q3. Each dataset is described by taking into account
the devices and sources monitored, and data morphology.
Below, the analysis is organized according to the two main
application scenarios stated in Section III, which are Device
identification and Misbehavior detection–attack and anomaly
detection.

A. Device Identification Datasets

Several datasets published in recent years and collecting
device behavior are conceived to perform device model, type,
or individual identification. In 2006, Maya Rodrig et al. pub-
lished the uw/sigcomm2004 dataset [155]. The main purpose
of this dataset is to analyze how Wi-Fi networks work and
how they can be improved. This dataset contains 70 GB of

both wired and wireless traces. The wireless traces were col-
lected for five days using three computers in monitor mode
near access points. Selcuk Uluagac published in [156] the
dataset associated with his research work on network-based
individual device identification [74], [157]. This dataset con-
tains the inter-arrival time of network traffic packets collected
from 30 wireless devices. 1.5 GB of data was collected both
actively, directly communicating with the devices, and pas-
sively, sniffing the communications. This dataset can be used
to generate network-based fingerprints and derive parameters
such as approximated clock skew.

With a similar goal, but focused on IoT, Miettinen et al.
published the IoT Sentinel dataset [12]. This dataset contains
the traffic generated during the setup of 31 IoT devices of 27
different types (4 types have 2 devices). To avoid anomalies
and have data variety, the device setup process was col-
lected at least 20 times for each device, generating a total
of 64 MB of data. Another dataset dealing with IoT devices
is the Yourthings dataset [140], which contains raw network
traffic from 45 different smart-home IoT devices. The data
was collected for 10 days in March and April of 2018. Each
day data contains from 10 to 13 GB. Following the same
approach, in [4], Sivanathan et al. published a dataset col-
lected for IoT device classification under IoT Traffic Traces
name. The data was collected in 2016 for 20 days from 28
different IoT devices, including cameras, lights, plugs, sen-
sors, appliances, and health-monitors. In addition, this dataset
also includes captures from non-IoT devices such as lap-
tops and smartphones. In total, ≈9.5 GB of raw pcap files
are available. As additional content, post-processing tools to
obtain IP, NTP, and DNS flows are also enclosed. Regarding
radio frequency, Allahham et al. [153] published DroneRF
in 2019, a dataset containing 3.8 GB of radio data collected
from 3 different drones during functioning. This dataset has
been designed for drone detection, identification and track-
ing. More recently, Hagelskjær et al. published in 2020 a
dataset designed for IoT device identification based on radio
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TABLE X
MOST RELEVANT DEVICE IDENTIFICATION DATASETS THAT USE DEVICE BEHAVIOR FINGERPRINTING

spectrum monitoring [178]. The dataset contains +50 GB of
863-870 MHz band raw spectrum measurements with a sam-
pling frequency of 10 MSPS collected in November 2018.
The published dataset contains both raw spectrum captures
and pre-processed features extracted with PCA.

Table X summarizes the public datasets previously
described, paying attention in their publication year, moni-
tored devices, and data sources collected. Most of the datasets
(5 of 7) contain network traces or network-based features.
It could be due to the facility to monitor from outside the
device behavior without modifying its software. Furthermore,
this source is quite generic as almost every device has at
least one network interface. Additionally, the two datasets
not based in network communications contain spectrum mea-
surements, another externally-collected source. In this context,
there is a missing spot for device identification datasets con-
taining sources such as clock skew, system logs or events, and
resource usage metrics.

B. Anomalous Behavior and Attack Datasets

The second dataset category is based on public datasets con-
taining anomalous device behavior, either based on attacks or
other exceptional situations. Note that most of these datasets
also contain normal or benign device behavior, which can be
utilized to model normal device behavior and identify it, like
in the previous subsection. Next, the main datasets found in
the literature will be detailed.

The family of datasets that considers network communica-
tions to create device behavior fingerprints is extensive. One of
the most representative is the CTU-13 dataset [162], a botnet
traffic activity dataset collected in 2011. 13 different botnet
samples were captured during different attack conditions such
as Command and Control (C&C) connection and the launch-
ing of diverse attacks –DDoS, or port scanning, among others.
Additionally, the dataset also contains normal and background
network traffic. In total, this dataset contains +140 hours of
network traffic with a total size of ≈700 GB. Besides, the
dataset has been updated in the last years to include IoT
malware captures. A set of relevant datasets, IDS 2017 and
2018 datasets [160], was created by the Canadian Institute of
Cybersecurity (CIC). They contain raw network traces and
derived features obtained during different network attacks.
Concretely, the monitored attacks were FTP and SSH Brute

Force, DoS, Heartbleed, Web Attacks, Infiltration, Botnet, and
DDoS. In addition, these datasets also contain benign traffic.
The 2017 dataset was collected from 25 users and contains
51.1 GB of data, while the 2018 dataset contains 220 GB of
traffic from 500 different devices. The previous datasets were
collected and processed by Filho et al. [73] to extract ≈40 MB
of vectors with 73 features relative to IP headers of the traf-
fic flows. Then, the dataset was published together with a
research article. Also from CIC, the ISCX botnet dataset [161]
contains raw network captures of 16 different botnet mal-
ware. This dataset is generated by combining previous CIC
datasets containing botnet activity. In total, the dataset contains
5.3 GB of training traces and 8.5 GB for testing. Aligned with
the previous datasets, in [179], the authors provided a novel
network dataset, published in September 2019, which contains
several types of attacks in an IoT environment. The dataset is
composed of ≈ 1.5 GB of real and simulated attacks, such as
port scanning, flooding, brute force, or ARP spoofing, among
others. In the case of real attacks, the network packets were
obtained from Mirai botnet. To identify the network behavior
of the devices infected, packets were captured while simulating
attacks through tools such as NMAP.

Anomalous behavior or attacks affecting IoT devices is
another cutting edge field where several datasets have been
created and published. In this sense, the N-BaIoT dataset [165]
contains more than 7 million vectors, with 115 features each,
giving around 20 GB, obtained by processing the network
communications of 9 different IoT commercial devices under
attack. Vectors contain 11 labels, 10 for different botnet
attacks, produced by Mirai and BASHLITE, and 1 for benign
traffic. Similarly, the DS2OS dataset [159] contains 61 MB of
features obtained from application layer traces collected from
simulated IoT devices such as light controllers, thermometers,
movement sensors, washing machines, batteries, thermostats,
smart doors, and smartphones. This dataset is designed for
anomaly detection in IoT node communications. In the same
line, the USNW IoT Benign and Attack Traces Dataset [10]
monitored network communications of 27 devices for 30 days,
being 10 of these devices victims of network attacks such
as ARP spoofing, TCP/UDP flooding, and packet reflection.
In total, more than 64 GB of data is available. This dataset
also provides the source code to derive vectors with 238 fea-
tures using packet counters and traffic flows. Another relevant
dataset is the NGIDS-DS dataset [102], which consists of
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6.7 GB of labeled network and device operating system logs
collected on a simulated critical infrastructure. The dataset is
designed for host-based intrusion detection and contains nor-
mal and attack scenarios. The authors used the IXIA Perfect
Storm tool to generate a wide variety of network attacks. The
data was obtained from a machine running Ubuntu 14.04 and
different common services such as Apache. The OS logs con-
tain the date, process id, system call, event id, and the network
data consist of raw traffic.

A similar approach was followed to generate the UNSW-
NB15 dataset [168]. This dataset contains 100 GB of raw
traffic flows and derived features from several attacks launched
using IXIA Perfect Storm. This attack set includes the same
type of attacks as NGIDS-DS dataset. The Aposemat IoT-
23 dataset [180], published in January 2020 by the same
team as for CTU-13 [162], is another labeled dataset con-
taining 23 captures of malicious and benign IoT network
traffic. Concretely, 20 captures include malware activity, while
3 include normal network activity of 3 IoT device types.
The dataset includes 11.3 GB of pcap files and 8.7 GB of
network log files. The authors utilized known malware, such
as Mirai, Okiru, or Torii botnets, port scanning, DDoS, C&C
connections. In the same direction, IoT-KEEPER dataset [55]
was published in 2020. This dataset contains 11.8GB of pcap
files collected from several IoT devices affected by common
attacks such as port scanning, botnet execution, DoS, or mal-
ware injection. Besides, it also contains network activity from
real computers, replicating a real edge network environment.
Finally, LITNET-2020 dataset [181] contains feature vectors
generated during 12 attacks on general computers deployed on
an academic network. In total, this dataset contains 26.9 GB
of vectors with 85 processed flow features extracted using
Netflow.

Focused on application layer communications of gen-
eral computers, ECML-PKDD 2007 [182] and HTTP CSIC
2010 [183] datasets are available. ECML-PKDD 2007 [182]
contains 80 MB of application layer requests in XML for-
mat. There are 25000 valid and 15000 attack requests, the
attack requests include SQL Injection, LDAP Injection, cross-
site scripting (XSS), and command execution, among others.
The data includes Web requests and also context information
such as server operating system, services, etc. The HTTP CSIC
2010 dataset [183] includes 56 MB of normal and abnormal
HTTP requests. It was published by the Spanish Research
National Council (CSIC) to test Web application attack pro-
tection systems. The dataset is divided into 36000 normal
and 25000 anomalous requests. The anomalous requests are
divided into three types of attacks: static, dynamic, and unin-
tentional illegal requests. Concretely, static attacks try to gather
hidden resources, while dynamic attacks are SQL injections,
XSS, etc. This dataset is usually used as benchmark for HTTP
anomalous behavior detection solutions.

From the system calls and execution traces perspective, it is
worth commenting the ADFA Intrusion Detection Datasets for
Linux [96] and Windows [173]. These datasets contain 9 MB
of Linux system call identifiers and 13.6 GB of Windows XML
system call traces of DLL libraries. Both datasets include
normal and attack system calls. Attacks include HydraFTP,

HydraSSH, Meterpreter, Webshell, and a poisoned executable.
Currently, these are widely used for benchmarking solutions
based on system call traces [184], [185]. The Firefox-SD
dataset [186] is also based on system calls, but in this case
made by Firefox browser in Linux. The dataset contains +1
TB of normal activity traces, collected while executing seven
browser testing frameworks, and attack-based traces, gener-
ated under attacks using known exploits such as memory
consumption, integer overflow, or null pointer exploit.

Dealing with ICSs and anomaly detection, one of the
reference datasets is the Secure Water Treatment (SWaT)
dataset [169]. This dataset was collected in 2016 from a real
water treatment testbed managed by a SCADA system. It con-
tains 11 days of continuous operation, 7 of them normal and 4
under attack by 36 different data injections. This dataset con-
tains ≈16 GB of traffic logs and 361 MB of measurements
obtained from 51 sensors and actuators. Additionally, SWaT
dataset was updated in December 2019 with 45 GB of raw traf-
fic and 6 MB of measurement logs, collected during 3 hours
of normal traffic and 1 hour in which 6 attacks were launched.
Similarly, the Water Distribution (WADI) dataset [170] con-
tains 575 MB of labeled sensor and actuator logs collected in
the same water treatment plant. In this case, the dataset con-
tains data from 123 sensors and actuators collected during 16
days of operation, having 14 days of normal traffic and 2 days
with 15 data injection attacks launched in total. Also in the ICS
field, in [133], Perales et al. developed a dataset called Electra,
based on a railway electric traction substation. The monitored
network protocols were Modbus TCP and S7Comm, common
in SCADA systems. This dataset contains 1.7 GB of derived
features originating from raw captures.

Regarding resource usage monitoring, the GWA-T-12
Bitbrains dataset [171] contains performance metrics collected
from 1750 virtual machines located in Bitbrains data center.
Resource usage metrics are collected in five-minute samples,
the monitored resources are the CPU usage, memory usage,
disk read/write throughput, and network received/transmitted
throughput. In total, 2.7 GB of traces are available, divided into
two sets of machines (1250 VMs used for fast storage and 500
with lower performance). Although BEHACOM [187] dataset
is focused on user activity monitoring (keyboard and mouse
interactions), it also contains resource usage metrics regarding
active applications, CPU, and memory. This data was collected
from the computers of 12 users over 55 days. In total, this
dataset contains 6.1 GB of features derived from user activ-
ity. Also dealing with resource usage monitoring but from the
mobile devices prism, CIC has released two different datasets
on dynamic smartphone behavior and its relationship with mal-
ware. The first one is CIC-AAGM (CIC Android Adware and
General Malware) [188], which contains +20 GB of traffic
flows generated when installing 1900 different applications,
being 250 adware, 150 malware, and 1500 benign. The sec-
ond is InvesAndMal2019 [189] dataset, which includes device
status, traffic flows, permissions, API calls, and logs gener-
ated by 426 malware and 5065 benign Android applications.
In total +275 MB of logs and features are available.

Other existing datasets are more than 20 years old, which
makes them outdated with regard to current scenarios. This is
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TABLE XI
MOST RELEVANT ANOMALOUS BEHAVIOR AND ATTACK DATASETS THAT USE DEVICE BEHAVIOR FINGERPRINTING

the case of DARPA 1998/1999 [190], [191], KDD99 [166],
and NSL-KDD [167] datasets. The original datasets, DARPA
1998 and 1999, are composed of ≈ 10 GB of network traffic
and system logs collected by MIT Lincoln Laboratory. The aim
of these datasets was to build a generic evaluation dataset for
intrusion detection. 56 different attacks were recorded, includ-
ing different DoS, buffer overflow, and reconnaissance attacks,
among others. The network traces were stored in tcpdump for-
mat and the system logs as BSM/NT audit data. Afterward,
KDD99 dataset was derived from DARPA traffic by extracting
1.2 GB of features from the traffic flows. Besides, NSL-KDD
is a refinement of KDD99 were duplicated entries are deleted
and classes are more balanced, reducing the dataset to around
60 MB. These datasets have become some of the most popular

datasets for intrusion detection evaluation. However, as com-
mented before, they are outdated compared to current networks
and attacks.

The same issue occurs with the system call dataset of the
University of New Mexico (UNM) [172]. This dataset was
collected in 1999 and contains ≈500 kB of system call and
process identifiers. The collected system calls contain normal
activity and different attacks such as buffer overflows and tro-
jans. This dataset has been widely used as benchmark for
system call anomalies-based attack detectors [111]. However,
the system call arguments are not available and it is outdated
regarding modern attacks.

Table XI gives an overview of the public datasets with
focus on behavior anomaly and attack detection. It can be
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Fig. 6. Distribution graphs of device behavior fingerprinting dataset.

appreciated how most of the datasets are focused on network,
followed by system calls and logs. The datasets monitor-
ing the previous sources are varied and cover several device
types such as IoT, ICSs, mobile devices, or general computers.
However, other sources such as resource usage or HPCs are
under-exploited regarding public datasets for anomaly detec-
tion. Datasets monitoring IoT device communications during
attack and malware execution have gained importance for the
last years and nowadays are the dominant type of anomalous
behavior datasets. The most common IoT malware families,
such as Mirai botnet, have been largely monitored from a
network-based perspective in datasets such as CTU, USNW
IoT Traces or IoT-23. However, there is no IoT-based dataset
containing in-device behavior sources, something highly use-
ful for modeling how malware works and what changes occur
within the device functioning itself.

Fig. 6 shows the dataset distribution regarding main appli-
cation scenarios and behavior source collected, and their
publication year. Note that some datasets can contain several
sources at the same time, for example, network communica-
tions and system logs. As final section thoughts, we notice
that when it comes to developing a behavior evaluation solu-
tion, a key aspect is data availability, as the underlying
solutions depend on it. Many works utilize self-collected pri-
vate datasets to validate their approaches. However, to have
a proper performance comparison, it is worth having pub-
lic datasets allowing to cross-verify the proposed solutions.
Furthermore, some teams do not have enough resources to
collect enough data but have good processing and evalua-
tion ideas. Therefore, having public datasets is essential to
make diverse and well-performing behavior-based proposals
possible.

VII. LESSONS LEARNED, TRENDS AND CHALLENGES

Based on the different aspects of behavior fingerprinting
analyzed through questions Q1-Q4, this section responds Q5

(How have application scenarios evolved for the last years?).
To this end, it summarizes the main lessons learned, trends,
and open challenges extracted from the present study of device
behavior fingerprinting.

A. Lessons Learned

After reviewing and analyzing the state-of-the-art, we were
able to identify the following main lessons:

Network communications are the most exploited source.
As Fig. 5 shows, it is utilized in 85% of works focused on
device models or type identification, and in 54.28% of attack
detection solutions. However, this source is less exploited
in individual device identification (8.33% of the solutions)
and malfunction detection (15.38%). This is because the data
obtained from the network communication perspective is not
sensitive enough as required for these scenarios, e.g., two
devices of the same model deployed with the same purpose
will have almost identical network communications.

Clustering is widely applied for inferring classes. As
Table VI shows, in device type or model identification
approaches, many solutions combine unlabeled data with clus-
tering to group data samples and derive device classes, and
then apply ML/DL classification approaches. Besides, some
attack and malfunction detection techniques also rely on this
approach (see Table VIII and Table IX). This fact shows the
viability of clustering techniques for deriving classes from
unlabeled behavioral data.

ML and DL are the favorite approaches for both classi-
fication and anomaly detection. Table VI, VII, VIII, and IX
show that ML and DL are the main solutions applied for
data processing, no matter if the objective is classification
(of device types/models or attacks) or anomaly detection,
either to detect attacks or faults. This fact shows the enor-
mous flexibility and capabilities of these techniques inferring
complex data patterns, outperforming traditional processing
methods.
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Individual device identification is one of the most com-
plex application scenarios. Only some lower-level features,
such as system clocks, code execution time, clock skew, or
electromagnetic signals are sensitive enough to detect min-
imum physical differences that occurred during the device
manufacturing processes. Thus, these are the ones required
for individual identification. However, the monitoring of these
sources is usually complex.

There is no consensus in misbehavior detection solutions.
As Table VIII and IX show, attack and malfunction detection
is addressed from heterogeneous perspectives. The selection of
data sources and processing techniques depends on the type
of anomalies that will be detected. Although network is the
most used source, many solutions use system calls and logs,
hardware events, or resource usage.

Public datasets are mainly focused on network, system
calls, and logs. Fig. 6 shows that there are 35 datasets con-
taining these sources (note that some datasets contain both
sources at the same time, so they are counted both as network
and calls/logs source). Moreover, Table X and XI show that in
most cases the datasets contain raw data instead of processed
information or features.

B. Current Trends

The main approaches expected in future works, based on
the evolution of the proposals published in recent years, are:

ML and DL algorithms are gaining prominence. As
Fig. 4 shows, ML and DL are the most usual techniques,
with 46.39% of importance (note that many solutions uti-
lize different techniques). In addition, DL-based techniques
are gaining more importance, especially for time series pro-
cessing, due to their performance handling raw data without
pre-calculated features. Table VI, VII, VIII, and IX show that
in both behavior fingerprinting scenarios (identification and
misbehavior detection), ML and DL approaches are gaining
importance in the last years. Overall, ML and DL algorithms
are applied in the 71.87% of identification and in the 62.5%
of misbehavior detection solutions.

Statistical and knowledge-based algorithms relegation.
As Fig. 4 shows, processing and evaluation techniques based
on statistical and knowledge-based algorithms are losing
importance as evaluation approaches, in favor of ML and DL
trend.

IoT and ML/DL convergence. In modern IoT scenarios
where devices are massively deployed, behavior fingerprint-
ing is critical management solution, grouping similar devices
and detecting faults. ML and DL techniques are the best alter-
native when it comes to leverage the vast amount of data
generated with the required performance and adaptability. This
fact can be observed in the solution comparisons located in
Table VI, VII, VIII, and IX.

Dataset publication. As it can be appreciated in Fig. 6 and
in Table X and Table XI, a good number of datasets have been
published for the last years. In the last five years (2016-2020),
23 public datasets were released, while in the previous five
years (2011-2015) were only 7. This trend is influenced by
the AI explosion, as ML and DL are powered by datasets.

Attack detection and model identification are the promi-
nent application scenarios. Fig. 5 shows how attack detection
and type or model identification solutions have been gaining
prominence in the last years, increasing from 50% in 2017
to 85.71% in 2020. This trend is a direct consequence of the
explosion in IoT deployments, as new requirements rise asso-
ciated with the heterogeneous variety of devices and the new
security issues generated by them.

C. Future Challenges

Based on the current state-of-the-art, the following points
represent the main challenges that future behavior fingerprint-
ing solutions might consider to enhance current solutions.

Usage of public datasets for behavior-based solution
performance comparison. Many solutions are based on pri-
vate datasets, which makes it difficult, if not impossible, to
compare performance between different solutions. Among the
solutions analyzed, only 45% of device model/type identifi-
cation used public datasets. The same goes for the 16.66%
about individual device identification, 42.85% tackling attacks,
and 7.69% concerning malfunction detection, by using pub-
lic datasets. Thus, a right direction for future approaches is
to evaluate and compare their performance through public
datasets.

Diverse and quality behavior dataset publication.
Regarding device identification, the main publicly available
datasets are focused on the network communications source.
However, there is a lack of modern and variate datasets based
on other sources. Then, it would be interesting for novel
proposals addressing behavioral fingerprinting to publish the
collected datasets, if any. Besides, datasets should have enough
quality to ensure that research results are not influenced or
damaged by low-quality data.

Solution scalability regarding the number of moni-
tored devices and deployment architecture. Scalability is
an issue that affects various aspects of behavior monitoring
solutions. Many solutions covering individual device identifi-
cation have detected that the number of devices is a challenge
[61], [63], [74]. The more devices in the scenario, the worse
classification results. Furthermore, centralized deployments
may suffer if too many devices send behavioral data, or
blockchain-based solutions may suffer block validation issues.
Finally, during data evaluation, solutions based on statistical
approaches that require one to one evaluation [94] may not
scale at all when the number of devices increases.

Define anomaly countermeasures to apply when an
attack or fault is detected. Many solutions solve the mis-
behavior detection problem, both when it is caused by a
cyberattack or a system fault. However, most solutions do not
propose any countermeasure [192] to mitigate the detected
misbehavior. Only a few works propose some remedies for
misbehavior, such as [7], [92].

Secure the behavior monitoring and analysis process
against attacks. The fingerprinting solutions can suffer attacks
or modifications performed by malicious entities. This fact can
jeopardize the entire fingerprinting mechanism, and in the case
of centralized processing solutions, even affect other device
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behavior evaluation. However, few works took behavior moni-
toring security into account [90]. To solve this issue, additional
security mechanisms, such as encryption, should be added to
current solutions. Besides, there is an emerging area on adver-
sarial attacks to ML/DL models that should also be considered
in future solutions [193]. Finally, trust frameworks [194] can
be included in behavior monitoring deployments to guarantee
system safety.

Private device model and type to guarantee security.
In some circumstances, like when there are known vulnera-
bilities, the model and type of devices should be private to
avoid targeted attacks [195]. It has been demonstrated how
privacy leakage attacks can be used to identify device model
and type [196], [197] and further countermeasures, such as
dummy traffic generation are required. In this context, there is
a growing research area on device privacy enhancement [198]
working in different solutions such as blocking traffic, con-
cealing DNS, tunneling traffic, and shaping and injecting
traffic.

User’s privacy impact and awareness. Device behavior
analysis can be leveraged to perform users’ activity track-
ing and behavior monitoring [199]. The inference of users’
activity has been demonstrated possible by behavior analy-
sis [200] in health care and smart home IoT environments,
even with encrypted traffic [201]. As an example, the TV chan-
nels watched by a given subject have been inferred in [202].
Therefore, manufacturers and service providers should include
solutions to improve users privacy and defend them against
activity inference attacks. These solutions are aligned with the
ones commented in the previous challenge, as they can cover
both user and device privacy at the same time.

Guarantee behavioral data and model privacy. As in user
behavior, data and model privacy is a crucial aspect to consider
when performing data analysis. From an ethical perspective,
behavior analysis solutions should be employed to fingerprint
devices in a non-intrusive way. However, privacy laws, such
as GDPR [203] in Europe, are mainly focused on user per-
spective, leaving some device behavior fingerprinting methods
out of their scope. To solve this problem, privacy-preserving
solutions, such as federated learning [114] combined with dif-
ferential privacy [204], allow training ML/DL models that
ensure data privacy.

Apply novel ML/DL approaches for behavior processing
and evaluation. As ML and DL are fast-evolving fields, some
recent techniques have not been applied yet. For example,
UMAP [205] for dimensionality reduction, or XGBoost [206]
for classification, could improve current solution performance.
Besides, DL architectures may combine convolutional and
recurrent neuron layers for DL-based time series process-
ing [207], [208]. Finally, any of the analyzed solutions
addressed an approach based on Reinforcement learning [209],
which has gained notable relevance in communications and
networking areas [210], and human behavior analysis [211].

Consider ML/DL models behavior in the device analy-
sis. Nowadays, devices usually include embedded ML and DL
models that perform specific tasks with the data the device
manipulates. However, the ML and DL models deployed on
the devices have their own behavior [212], which influences

the general device behavior. Then, understanding AI-powered
applications and services is critical to identify the device
behavior and its anomalies.

VIII. CONCLUSION

Device behavior fingerprinting has been determined in
recent years as a promising solution to identify devices with
different granularity levels, as well as to detect misbehavior
originated by cyberattacks or faulty components. The article
at hand studies the evolution of the device behavior research
field, performing a comprehensive review of the devices,
behavioral sources, datasets, and techniques used in both appli-
cation scenarios. In this context, the present work has been
performed with the goal of answering the following research
questions.

Q1. Which scenarios, device types, and sources are present
in behavior-based solutions? Section III reviews how these
three aspects are used in the most recent and representative
works of the literature. The performed analysis shows a rele-
vant heterogeneity of device types and behavioral sources in
the existing solutions, and highlights the usage of network
communications in the majority of the solutions.

Q2. What and how behavior processing and evaluation tasks
are used in each scenario? Section IV analyzes the main
techniques and algorithms –rule-based, statistical, knowledge-
based, ML and DL, and time-series approaches– used by
works dealing with device and misbehavior identification.
The analysis results show how ML and DL-based approaches
are gaining importanc due to their versatility and excellent
performance when enough training data is available, and to
the detriment of statistical and knowledge-based solutions.

Q3. What characteristics do the most recent and represen-
tative solutions of each application scenario have? In the core
section of this article, Section V, the reviewed solutions are
described, analyzed, and compared according to their applica-
tion scenario, device types, sources, techniques, and results.
Regarding sources, this section shows that in device type or
model identification solutions, network source is the domi-
nant approach. In individual device identification, clock skew
and electromagnetic signals are the main data sources. Attack
detection is also mainly tackled using network communica-
tions. In contrast, for fault detection, the main approach is to
utilize resource usage data. In terms of processing and evalu-
ation techniques, ML and DL techniques are dominant in all
the considered scenarios.

Q4. Which behavior datasets are available and which are
their characteristics? In Section VI, the main public datasets
containing device behavioral data are analyzed according to
their application scenario. It also details the characteristics of
the data they contain and how they were collected. This section
shows the prominence of network source in the current public
datasets, and the lack of other sources such as resource usage
or hardware events.

Q5. How have application scenarios evolved for the last
years? Lessons learned, current trends, and future chal-
lenges have been drawn in Section VII, which details how
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network source and ML/DL algorithms are gaining promi-
nence. Furthermore, it is also remarkable that novel ML/DL
approaches, such as recurrent and convolutional neuron layer
combination or Reinforcement learning, have not yet been
applied in the area, which opens up pathways for future
research. It also depicts how dataset publication is gain-
ing importance during the last years; however, more relevant
datasets are still required for sources and devices that are not
covered in recent ones, e.g., resource usage or system logs in
IoT devices or ICSs.

Aligned with the current trend and challenges drawn in this
work, we will focus our next efforts on designing and imple-
menting scalable behavior-based solutions to identify individ-
ual devices and detect cyberattacks affecting IoT devices. In
both scenarios, we plan to utilize privacy-preserving ML and
DL techniques, such as distributed and federated learning, to
protect behavioral data while guaranteeing performance capa-
bilities. Finally, we plan to build datasets for both scenarios,
which will be publicly accessible to improve current dataset
diversity and quality.
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A B S T R A C T

The connectivity and resource-constrained nature of single-board devices open the door to cybersecurity
concerns affecting Internet of Things (IoT) scenarios. One of the most important issues is the presence of
unauthorized IoT devices that want to impersonate legitimate ones by using identical hardware and software
specifications. This situation can provoke sensitive information leakages, data poisoning, or privilege escalation
in IoT scenarios. Combining behavioral fingerprinting and Machine/Deep Learning (ML/DL) techniques is a
promising approach to identify these malicious spoofing devices by detecting minor performance differences
generated by imperfections in manufacturing. However, existing solutions are not suitable for single-board
devices since they do not consider their hardware and software limitations, underestimate critical aspects such
as fingerprint stability or context changes, and do not explore the potential of ML/DL techniques. To improve
it, this work first identifies the essential properties for single-board device identification: uniqueness, stability,
diversity, scalability, efficiency, robustness, and security. Then, a novel methodology relies on behavioral
fingerprinting to identify identical single-board devices and meet the previous properties. The methodology
leverages the different built-in components of the system and ML/DL techniques, comparing the device internal
behavior with each other to detect variations that occurred in manufacturing processes. The methodology
validation has been performed in a real environment composed of 15 identical Raspberry Pi 4 Model B and
10 Raspberry Pi 3 Model B+ devices, obtaining a 91.9% average TPR with an XGBoost model and achieving
the identification for all devices by setting a 50% threshold in the evaluation process. Finally, a discussion
compares the proposed solution with related work, highlighting the fingerprint properties not met, and provides
important lessons learned and limitations.

1. Introduction

The diversity of IoT devices in modern scenarios is huge, but single-
board devices, such as Raspberry Pi, have gained enormous prominence
due to their flexibility, reduced price, broad support, and peripherals
availability (Fayos-Jordan et al., 2020). Unfortunately, the connectivity
and resource-constrained nature of single-board devices, and IoT in
general, open the door to numerous cybersecurity concerns affecting
heterogeneous platforms (Perales Gómez et al., 2019). One of the most
important cybersecurity concerns affecting IoT is the presence of unau-
thorized devices with the same hardware and software configuration
as authorized nodes. Some real attacks based on unauthorized devices
have caused big impacts in areas such as Industry 4.0 (Jagdale, 2022)

∗ Corresponding author.
E-mail address: pedromiguel.sanchez@um.es (P.M. Sánchez Sánchez).

or mobile phones (Montalbano, 2020). These malicious devices can
be articulated by several well-known cybersecurity threats (Liu et al.,
2020), such as device spoofing (Nosouhi et al., 2022), occurring when
an attacker replaces a legitimate sensor or actuator with a malicious
device using the same identity; unauthorized device deployment, related
to the installation of a new device in the platform which is using an
unregistered identity; and Sybil attack, referring to a malicious device
(or many) using numerous identities to simulate being several devices.
After that, other cybersecurity threats, such as sensitive information leak-
age, data poisoning, or privilege escalation and lateral movements, might
arise as a consequence of spoofed devices. Besides, modern attacks
exploit evasion techniques in order to be undetected by software-based
security methods.
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Traditional identification solutions rely on names, identifiers, cer-
tificates, or tags in order to perform the identification tasks. However,
these solutions can be cloned or modified if the software of the de-
vice is completely replicated (Yousefnezhad et al., 2020). Hardware
behavior fingerprinting is a potential solution for the identification of
single-board devices with identical hardware and software, but still
an emergent and open challenge. In such a context, there is no work
focused on identical single-board device identification (Sabhanayagam,
2022). However, for other devices without component and resource
limitations, the literature has proposed the usage of hardware behav-
ioral fingerprinting as a promising solution to detect minor performance
differences generated by imperfections occurred during the devices
manufacturing process (Al-Omary et al., 2018).

In particular, existing work focuses on crystal oscillator impuri-
ties and cut variations that generate imperfect frequency outputs in
components such as CPU or GPU to detect performance differences
in identical devices (Polcák and Franková, 2015). Current solutions
consider dimensions such as clock-skew analysis, intrinsic Physical
Unclonable Functions (PUFs), or execution time and performance anal-
ysis (Sanchez-Rola et al., 2018). However, despite their benefits, the
following challenges are still open: (i) many solutions require addi-
tional components or modifications in the devices, which is not possible
in some IoT scenarios (Babaei and Schiele, 2019); (ii) there is no
solution for identifying identical single-board devices based on their
hardware (Babun et al., 2021); (iii) existing solutions are designed
for traditional computers, being not suitable for IoT environments with
single-board devices with software and hardware restrictions (Sanchez-
Rola et al., 2018); (iv) most of the existing identification solutions have
been tested missing essential properties and requirements affecting the
identification performance (Rührmair et al., 2012); and (v) despite
Machine and Deep Learning (ML/DL) techniques have gained enormous
importance for the last years, they have not yet been widely applied in
the individual device identification field (Sánchez Sánchez et al., 2021).

In order to improve the previous challenges, the main contributions
of the present work are:

• The definition of a set of properties that should be fulfilled
by any fingerprinting solution in charge of identifying identical
single-board devices. These properties are uniqueness, stability,
diversity, scalability, efficiency, robustness, and security.

• A novel methodology that leverages hardware behavioral finger-
printing to identify identical single-board devices, solving the
problems and drawbacks of previous solutions. Some of these
problems are the need for additional hardware, chip modifica-
tions, or physical access to the device to perform the identifica-
tion. The proposed methodology creates unique device behavioral
fingerprints measuring the impact that insignificant hardware dif-
ferences, happened during the manufacturing process of identical
devices, have on the device performance when a given task is
executed.

• The validation of the proposed methodology, as a Proof-of-Concept
(PoC) available on Sánchez Sánchez (2021), in a scenario com-
posed of 25 identical Raspberry Pi 3 and 4 devices used in IoT
scenarios. After testing different ML/DL algorithms, 91.9% aver-
age TPR was achieved by XGBoost, and a perfect identification
was carried out by setting a 50% threshold in the assigned classes.

• A detailed analysis and comparative of existing device finger-
printing solutions for individual device identification, focusing
on their suitability for IoT environments with single-board de-
vices. It highlights which fingerprint properties are not met in
each solution, rising issues such as reproducibility and solution
stability.

The remainder of this paper is organized as follows. Section 2
reviews the main solutions for identical device identification and dis-
cusses why these approaches are not appropriate for IoT environments
based on single-board devices. Section 3 describes the problem to be

solved by the present methodology. It details a short threat model for
the single-board device identification scenario. Then, it details the set of
properties required in a fingerprinting solution to make it appropriate
for individual device identification, together with the limitations found
in the literature works. The design of the proposed device identification
methodology is explained in Section 4, verifying how each fingerprint
property is accomplished. Section 5 acts as validation of the present
methodology, implementing it as a PoC that verifies its applicability
in a realistic use case. Section 6 compares the literature works with
the proposed methodology and depicts several lessons learned and
limitations. Finally, Section 7 shows the conclusions extracted from the
present work and future steps in the research.

2. Related work

This section gives the main insights of the related work dealing
with unique device identification, paying special attention to device
identification without additional external hardware requirements.

As a main remark, it is worth mentioning that, to the best of our
knowledge, there is no methodology for individual fingerprinting of
IoT devices based on hardware performance behavior. In fact, the same
happens in the field of traditional devices such as personal computers.
In this regard, the closest work is the one proposed by Babun et al.
(2021), in which a fingerprinting framework for identifying classes of
Cyber-Physical Systems (CPSs) was presented. This solution employed
hardware and OS/kernel characteristics following a challenge/response
mechanism for performance and system calls fingerprinting. During
the validation, a set of single-board computers were employed. Nev-
ertheless, the objective of Babun et al. (2021) is device type (class)
fingerprinting and identification, not individual device fingerprinting
when hardware and software are identical. Therefore, following this ap-
proach, identical devices would generate the same fingerprints, as the
data sources leveraged are based on OS/kernel or component-related
data and do not seek to identify fabrication variations or imperfections.

Although not defined in the form of a methodology, it is essential
to analyze existing work focused on hardware-based individual device
fingerprinting and device type identification, discussing the limitations
of each work when applied to single-board devices. In this context,
traditionally, Physical Unclonable Functions (PUFs) have been one of
the main methods for unique device identification. PUFs are hard-
ware elements that generate a unique physically-defined fingerprint
for a given output based on the manufacturing characteristics of the
physical chips. PUFs have been employed in IoT from several per-
spectives (Babaei and Schiele, 2019), differentiating between strong
and weak PUFs depending on the number of Challenge-Response Pairs
(CRPs). Strong PUFs are the ones most used for authentication protocols
in IoT (Babaei and Schiele, 2019). However, the majority of strong
PUFs require additional dedicated hardware elements that have to be
attached to the device. This fact makes this solution not scalable in
large environments, as costs per device are increased and commercial-
off-the-shelf (COTS) devices have to be modified, or where direct access
to the device is not possible. In contrast, most intrinsic PUFs in the
literature require hardware modifications (Kong and Koushanfar, 2013)
or components such as SRAM not present in IoT devices due to cost
restrictions (Gao et al., 2019). Besides, some works using DRAM chips,
present in IoT devices, require power-up chip status analysis (Yue et al.,
2020; Tehranipoor et al., 2016), which is not straightforward to be
done from the device itself.

From crystal oscillator analysis, Salo (2007) exploited differences
in Real-Time Clocks (RTCs) and sound card Digital Signal Processors
(DSPs) based on the drift between these chips and the CPU cycle
counter (TSC in Intel processors). RTC-based and DSP-based differen-
tiation achieved 98.7% and 93.3% of uniqueness when 703 computer
pairs were evaluated. However, this method involves the use of com-
ponents that, although common in computers, are not often available
in single-board devices. Also leveraging oscillators, Sanchez-Rola et al.
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Table 1
Individual device identification solutions based on device behavior fingerprinting.

Work Year Device type Algorithms Behavior source Features Results

Salo (2007) 2007 General
computers

Statistical Processors and
oscillators

RTC and DSP drift
compared to the TSC

98.5% and 93.3% of
differentiation by RTC and DSP in
38 PCs, respectively.

Jana and
Kasera
(2009)

2009 Wireless access
points

Expectation
Maximization

Clock skew
Wi-Fi
beacons
timestamps

Clock skew is a robust method
and can detect different WLAN
APs.

Sharma et al.
(2012) 2012 General

computers
Statistical Clock skew

TCP and
ICMP
timestamp

Both identical and different
devices correctly identified.

Wang et al.
(2012) 2012 General

computers
Correlation
coefficient

Flash
memory

Bit partial
programming

Estimated false positive chance of
4.52 × 10−815, and a false negative
chance of 2.65 × 10−539.

Radhakrishnan
et al. (2014) 2014 Wireless

devices ANN Clock skew +
Network

Communication skew and
patterns

From 99 to 95% accuracy and
74% recall on individual
classification.

Nakibly et al.
(2015) 2015 General

computers
Entropy GPU Frames per

second
Graphic rendering show
differentiation capabilities on 9
identical PCs, but no advanced
tests were performed.

Sanchez-Rola
et al. (2018) 2018 General

computers
Statistical
(Mode)

System
processors

Matrix of code execution
times

100% host-based and +80%
web-based device identification in
two sets of 89 and 176 PCs.

Jafari et al.
(2018) 2018 Wireless

devices
MLP, CNN,
LSTM

Electromagnetic
signals

Radio frequency IQ
samples

96.3% accuracy for MLP, 94.7%
for CNN and 75% for LSTM when
identifying 6 identical ZigBee
devices.

Riyaz et al.
(2018) 2018 Wireless

devices CNN Electromagnetic
signals

Raw
frequency IQ
samples

98% accuracy is achieved when
identifying 5 identical devices.

Dong et al.
(2019) 2019 General

computers
Dynamic Time
Warping

Resource
usage

CPU
usage-based
graph

93.43% of uniqueness in the
generated fingerprints of 10
identical devices.

Babun et al.
(2021) 2021 CPSs Correlation-based

(Own)
Hardware and
OS/kernel

Syscalls, Memory, CPU,
Time

Device type (model/OS version)
identification, not individual
identification.

This Work 2022 Single-board
devices

XGBoost Hardware cycle
counter skew

Window-based GPU/CPU
features

91.9% average TPR when
identifying 15 RPi4 and 10 RPi3
devices.

(2018) proposed a fingerprinting method based on execution time. The
authors cyclically executed a simple function to generate a time matrix,
and then they calculated the statistical mode of each matrix row to
generate the fingerprint. Then, matching values in the fingerprints were
compared according to a similarity threshold. The authors were able
to identify two computer sets of 176 and 89 devices, and achieved
85% on a web-based implementation. Compared to the work at hand,
single-board devices do not include an RTC with which to compare
CPU time (two different clocks are required to analyze their deviation)
and usually only contain one physical oscillator. Furthermore, after
practically experimenting with this approach on single-board devices
(see Section 6), it has been found that the resolution when measuring
time on single-board devices does not allow this solution to be applied.

Additionally, some works have addressed identical device identifi-
cation based on clock-skew calculated from network packets (Kohno
et al., 2005; Sharma et al., 2012; Radhakrishnan et al., 2014) or
wireless beacons (Jana and Kasera, 2009). However, they have shown
scalability issues when the number of devices increases and require a
common observer in the fingerprint and identification process; if the
observer changes, the identification is no longer possible (Radhakr-
ishnan et al., 2014; Lanze et al., 2012; Polcák and Franková, 2015).
Besides, raw radio frequency measurements (Jafari et al., 2018; Riyaz
et al., 2018) and Bluetooth transmissions (Huang et al., 2014) have
also been used to identify devices uniquely, but these methods, as
other wireless-based methods, require a near physical location to the
fingerprinted device.

Based on hardware performance behavior, Wang et al. (2012) an-
alyzed the differences that occur when writing a page in a Flash chip
based on manufacturing variations. To evaluate different fingerprints of
the same page, the authors used Pearson correlation coefficient. Based
on their experiments on 24 chips, the authors showed an estimated
false positive chance of 4.52 × 10−815, and a false negative chance
of 2.65 × 10−539. However, not every device includes a Flash chip to
apply the technique and its usage requires knowledge of low-level
hardware. Recently, Dong et al. (2019) developed a fingerprinting
method based on the CPU usage graph generated while the device
executes a cyclical task. The authors achieved a 93.43% uniqueness in
generated fingerprints when comparing them using the Dynamic Time
Warping algorithm. However, the authors did not take into consider-
ation critical aspects such as variable frequency or process scheduling
between device cores affecting the identification stability. Regarding
GPU, Nakibly et al. (2015) exploited GPU frequency and skew by using
CPU clock as reference. Statistical fingerprints generated while render-
ing complex graphics show differentiation capabilities on 9 identical
desktop computers, but no advanced tests were performed regarding
fingerprint reliability and stability. In fact, the authors conclude that
other factors to the GPU clock skew should be considered in a successful
fingerprinting method.

Table 1 compares the main characteristics of the previous works.
After reviewing these related works, the following points are extracted
as conclusions. It is critical to develop modern fingerprinting mecha-
nisms taking into account IoT device capabilities and constraints, as no
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previous work considered this application scenario. Besides, to ensure
that the fingerprinting mechanisms are fully operative, they should
be defined through a methodology able to verify that the solution is
reliable and applicable in real word scenarios.

3. Problem statement

This section presents the particularities of single-board devices to
later illustrate the threat model of single-board device identification.
After that, it describes the properties that identification solutions based
on behavioral fingerprinting should meet in the presented scenario.
Finally, it highlights the limitations of existing work and motivates the
necessity of novel solutions.

3.1. Single-board device description

Although single-board devices offer great flexibility in terms of
applications and operating systems, there are essential characteristics
to consider before dealing with their identification. The main one is
that all processing, memory, input/output, and other components are
integrated into a single circuit board. In contrast, standard computers
have several circuit boards for different components. This fact brings
the following special aspects to consider:

• Reduced number of crystal oscillators. Due to the objective
of reducing costs, single-board computers usually dispense with
components that are not critical. Thus, most devices eliminate
the RTC and other physical oscillators, simulating their presence
through software or using another oscillator as source frequency.
The most common is to have only one or two oscillators, one for
the base frequency of the processing components and another for
USB and network interfaces.

• Many processing components integrated into a System on a
Chip (SoC). SoCs integrate microcontrollers with more advanced
processing units such as CPUs, GPUs, or memory circuits in a sin-
gle chip. As each of these components uses a different frequency
to operate, it is common to use Phase-Locked Loops (PLLs) in
the SoC (Pawar and Mane, 2017), circuits that multiply a base
frequency depending on the voltage they receive as input.

• Constrained processing power. Although single-board comput-
ers offer increasingly higher computing capabilities, they also aim
to maintain low resource consumption and low price. For these
reasons, the performance of single-board computers is not com-
parable to that of today’s computers or servers. This is important
and should be taken into account when generating the fingerprint.

3.2. Threat model

The main threat against the single-board device identification sce-
nario is an adversarial actor trying to introduce a illegitimate device
in a critical environment, such as an industry, by impersonating or
spoofing a legitimate one. This attack could be tackled from several
perspectives:

• TH1. Device spoofing (Marabissi et al., 2022). The main security
threat to solve is an adversarial entity replacing a legitimate de-
vice with a software identical malicious device. Here, the adver-
sary uses the same legitimate software identifiers, but including
malicious processes and functionality.

• TH2. Sybil (Rajan et al., 2017). A single device (or many) may
try to generate multiple identities to send fake data from many
simulated devices. The threat of a system to Sybil attacks depends
on (i) how easy the generation of identities is; (ii) whether the
system treats all entities identically, and (iii) the degree to which
the system accepts entries from entities that do not have a trust
chain that links them to a trusted entity.

• TH3. Advanced persistent threat (Chen et al., 2022). This threat
arises as a consequence of the previous one. A malicious de-
vice deployed in the environment might be able to collect data
from the scenario itself and from other devices, or perform fur-
ther attacks such as vulnerability scan and or Denial of Service
(DoS) attacks. Besides, modern attacks usually include evasion
techniques that hide their activities to software-based behavior
monitoring security solutions (Li and Li, 2020).

In order to solve the threats identified in this work, it is assumed
that even if the device is malicious, the control over it is maintained
by its legitimate administrator and the identification tasks can be exe-
cuted. This condition guarantees that device management is maintained
during a possible attack. Therefore, if this control is lost, it would be
directly assumed that the device is infected or there is some error.

3.3. Device identification properties

In order to solve the previous threats, it is needed a proper iden-
tification mechanism able to meet properties that guarantee a con-
sistent and reliable verification process, without forgetting the threat
model depicted in Section 3.2. Similar properties have been defined
before (Rührmair et al., 2012), but some of them are not suitable for
IoT and single-board devices. These characteristics encompass from the
fingerprint generation method to the morphology of the data generated
and its manipulation. Thus, they are essential metrics to evaluate the
performance of a device fingerprinting solution. In case one of them
is no longer met, the solution will be severely affected in real-world
deployments, limiting its usability when it comes to uniquely identify
each device in the scenario.

Uniqueness (Sembiring et al., 2021). An efficient fingerprinting
method should be able to uniquely identify its associated device. In
other words, a fingerprint should not be generated by two different
devices.

Stability (Hamza et al., 2018). The fingerprint generated by a
device should be consistent in time. It means that a new fingerprint
of a given device should be similar enough to the previous ones of the
same device.

Diversity (Ahmed et al., 2022). The data sources and data format
used to generate the fingerprint should be varied enough, so different
devices generate different fingerprints. This characteristic is intrinsi-
cally related to stability, as increasing too much fingerprint diversity
can affect its stability, and vice versa.

Scalability (Arellanes and Lau, 2020). The fingerprint should con-
tinue being unique as the number of devices to be identified increases.
This can be achieved by adding additional features to the fingerprint or
by looking for features that ensure uniqueness. Thus, this characteristic
is very closely related to the uniqueness property discussed before.

Efficiency (Peng et al., 2018). To have a fingerprint useful for a
live identification process, the generation and evaluation should not
consume excessive resources, either in processing power or time.

Robustness (Zhou et al., 2019). The generation of the fingerprint
must be immune to changes in the context that may affect the data
used in the fingerprinting process. These changes in the context may in-
clude elements such as temperature, time synchronization, or resource
exhaustion, among others.

Security (Lu and Da Xu, 2018). The fingerprint should be secure to
tackle device unauthorized access or adversarial attacks. This property
implies a complete fingerprint life cycle, from its generation to storage
and comparison in future identification processes.

A methodology to identify identical single-board computers based on
hardware behavior fingerprinting
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Table 2
Limitations found in each literature work.

Work Type No hardware modification IoT suitable Tested stability Remote/ Self-contained

Salo (2007) Oscillator-based ✓ ✗ ✓ ✓

Jana and Kasera (2009) Clock skew ✓ ✓ ✗ ✗

Sharma et al. (2012) Clock skew ✓ ✓ ✗ ✗

Wang et al. (2012) Flash chip-based ✓ ✗ ✗ ✓

Radhakrishnan et al. (2014) Clock skew ✓ ✓ ✗ ✗

Nakibly et al. (2015) Oscillator-based ✓ ✓ ✗ ✓

Sanchez-Rola et al. (2018) Oscillator-based ✓ ✗ ✓ ✓

Jafari et al. (2018) Radio-based ✓ ✓ ✗ ✗

Riyaz et al. (2018) Radio-based ✓ ✓ ✗ ✗

Dong et al. (2019) CPU usage-based ✓ ✓ ✗ ✓

Babaei and Schiele (2019) PUF ✗ ✓ ✓ ✓

Kong and Koushanfar (2013) CPU PUF ✗ ✓ ✓ ✓

Gao et al. (2019) SRAM Intrinsic PUF ✓ ✗ ✓ ✓

Tehranipoor et al. (2016) DRAM Intrinsic PUF ✓ ✓ ✓ ✗

Yue et al. (2020) DRAM Intrinsic PUF ✓ ✓ ✓ ✗

This work Oscillator-based ✓ ✓ ✓ ✓

3.4. Limitations of existing work

Although a good number of solutions are present in the literature,
as reviewed in Section 2, they are not suitable for single-board devices
and the device identification task that this work pretends to fulfill.
The conditions identified, which have not been covered altogether in a
single work, can be summarized as:

• No additional hardware or device component modification is
required. In this sense, no previous solution intends to design a
solution for COTS IoT devices, where devices already available
in the market do not need any modification to be physically
fingerprinted.

• Suitable for IoT devices, specially single-board devices. Many so-
lutions for performance-based identification leverage components
such as RTCs, which are not usual in IoT devices due to their
reduced price. Besides, some authors proposed intrinsic PUFs that
do not require additional hardware components. However, most
IoT devices include DRAM chips due to their cheaper cost. There
is a reduced number of works dealing with these components,
and they require power-up chip analysis (Yue et al., 2020; Tehra-
nipoor et al., 2016) which is complicated to be done from the
device itself where the DRAM is deployed without affecting the
PUF results.

• Tested stability and robustness. Some solutions in the literature
show favorable identification results. However, they do not an-
alyze critical factors affecting performance-based identification,
such as the impact of device rebooting, temperature, etc.

• Remote and self-contained identification. The identifying entity
does not need to be physically close to the identified device or
in the same local network, as in the case of clock skew-based
identification. Besides, no external component analysis is needed,
so the device itself can execute the identification process.

Table 2 evaluates the conditions correctly accomplished in each one
of the works reviewed in the literature regarding individual device
identification (Section 2. As it can be seen, no work meets the three
characteristics wanted in the present work.

4. Methodology definition

This section presents a novel methodology to identify identical
single-board devices using behavioral fingerprints. It focuses on mea-
suring the impact that insignificant hardware differences, which hap-
pened during the device manufacturing process, have on the device
performance to create unique and stable behavior fingerprints. These
differences are recognized by analyzing the performance of several
heterogeneous components, according to parameters such as execution
time or number of cycles. Thus, it is worth noting that this methodology

could be applied to other types of devices containing at least two
components to compare their behavior. Besides, ML/DL techniques are
applied as processing tool following the best practices in the area of
ML application for cybersecurity (Arp et al., 2022), but other statistical
methods could also be suitable.

As shown in Fig. 1, the proposed methodology follows a client/server
model and is composed of two fundamental phases: a first one of
generation and a second of evaluation. During the fingerprint gener-
ation phase, the objective is the creation of a fingerprint per device
by training ML/DL models for later device identification. During the
fingerprint evaluation phase, new fingerprints per device are generated
to be evaluated with the ML/DL models trained in the previous phase,
giving a final identification output for the device. The methodology
consists of the next seven fundamental steps, which can be repeated in
both phases depending on the tasks to be carried out:

• (A) Hardware Component Selection. Select the device components
whose behavior is going to be analyzed.

• (B) Component Isolation and Stability Assurance. Establish stable
conditions for the components, reducing external inferences to a
minimum.

• (C) Data Gathering. Measure the behavior of device hardware
components.

• (D) Data Preprocessing and Feature Extraction. Remove erroneous
measurements, normalizes them, and extracts new significant
values.

• (E) Evaluation Approach Selection. Decide between classification or
anomaly detection depending on the environment properties.

• (F) Model Generation and Evaluation Design. Train ML/DL algo-
rithms, select performance metrics, and establish model thresh-
olds.

• (G) Device Evaluation and Identification Decision. Repeat steps B, C,
and D to perform device identification.

Fig. 2 shows the relationship between the different steps detailed
above and the properties desired in an individual device identification
solution, as introduced in Section 3.3.

4.1. Hardware component selection

The first step is to analyze the hardware of the device where the
fingerprint needs to be generated. The goal is to identify components
with potential manufacturing variations whose performance can be
accurately measured and compared.

In this sense, since the fingerprint will be based on device self-
contained hardware, it is necessary to identify at least two components
to be used, as their behavioral performance will be compared to each
other since one component cannot notice its own performance imper-
fections without a reference point, although to improve the scalability
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Fig. 1. Graphical representation of the proposed methodology for device fingerprinting and identification.

Fig. 2. Association between methodology steps and fingerprint properties.

and diversity of the fingerprint more could be added if available. The
preference here is to select components whose frequency is based
on different physical oscillators, as their differences will be larger,
although components with different frequencies sharing one oscillator
as the base frequency can also be compared. Examples of compo-
nents to consider in single-board devices: CPU, GPU, memory, network
controllers, USB controllers, or time control oscillators.

4.2. Component isolation and stability assurance

Once the hardware components to be monitored are chosen, the
next step is to establish a configuration that ensures the stability of
the behavioral measurements. This step seeks to ensure a stable and
identical condition in the device configuration during the generation
of the fingerprint, both for training and testing phases. At this point,
it is critical to guarantee that there are no external elements, such as
other processes, introducing noise or variability.

With that goal in mind, one of the key factors to take into account
is the frequency at which the component is operating, since in single-
board computers it is common for the operating system to establish
some adaptability according to the load on the system or the need to
save energy. Thus, it is necessary to ensure that the fingerprint will be
generated under identical frequency conditions. Otherwise, it would be
impossible to compare the variation in performance between various
components. In this sense, components such as the CPU or GPU are
the ones that can have more variability in their operating frequency,
ranging from some MHz when are in power-save mode to several GHz
when they are under high-performance requirements. Another aspect
to take into account is the isolation of the software that performs the
measurements with respect to other programs running on the system.
The measures to guarantee this isolation include the separation of
some of the CPU cores from the general process scheduler, the use of
transactional memory (Harris et al., 2010), the disabling of interrupts
by the kernel or isolating the GPU. Note that the exact actions may vary
according to the components chosen. Moreover, it is also important to
control external conditions such as temperature to the extent possible,
since it can influence the performance variation of some components.
In the case of using CPU timers, time synchronization made by services
such as NTP should be also considered. These considerations seek to
improve the robustness of the fingerprinting solution.

4.3. Data gathering

When the desired stability conditions have been achieved, it is
necessary to define the functions to be performed on the components
(selected in phase A) to measure their behavior in parallel and deter-
mine the possible skew between them. In this sense, the measurements
must allow the comparison of the performance of two different com-
ponents from the same device, avoiding executing the operations and
measuring the deviation using a unique component.

Choosing the functions to run on each component to compare their
behavior is a critical task during the fingerprinting solution design and
must be carefully studied to ensure the efficiency, diversity, and unique-
ness of the fingerprint. Due to the fact that functions taking longer
times to execute may better show the variance between components,
but may make the fingerprint generation process take too long. In
addition, the created approach should not consume too many resources
as it could slow down the normal operation of the system and affect
other tasks. For example, the authors of Sanchez-Rola et al. (2018)
decided to measure functions that take a short time to execute using the
RTC, comparing CPU, and RTC oscillators. Besides, the authors of Salo
(2007) measured the clock cycles in one second compared with the RTC
and when processing one second of audio using the DSP. Moreover,
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to fulfill the security property, the data collection process should be
executed using Trusted Execution Environments (TEEs) (Lee and Park,
2020), if available, to isolate the fingerprint generation task from the
rest of the device processes. This avoids possible data leaks caused by
attacks based on memory vulnerabilities. Finally, the generated behav-
ioral data is sent to a server, where it will be processed to generate the
fingerprint. This sending should be done over a secure communications
channel, such as SSH or TLS, avoiding possible interceptions of data
transmissions.

4.4. Data preprocessing and feature extraction

Once the server receives the behavioral data, the next step is to
preprocess the data to eliminate possible erroneous measurements and
extract new information. Here, note that the data gathering step could
be done several times before going to data preprocessing and feature
extraction. The final objective is the generation of a set of feature
vectors that will act as the generated fingerprint data, guaranteeing the
diversity in the values. These vectors are the ones that will later be used
to feed the ML/DL algorithms and generate the models.

To start the preprocessing part, it is necessary to remove outliers,
constant, corrupted, or missing values that may be in the dataset by
scanning over the dataset. For that, it is useful to plot each set of values
collected and remove values that are more than 3 standard deviations
away from the average. Afterwards, it is highly recommended to scale
the data and have it in the same data range. In this sense, the most
common scaling algorithms are min–max and standard normalization.

Once errors have been removed and the values scaled, the next step
is feature extraction. It is possible to extract different features from the
series of values by grouping them together and calculating different
characteristics of the resultant series. One of the most typical values
is the extraction of statistical values such as mean, median, deviation,
max, min, or mode. However, applying more advanced calculations
can provide even more relevant information about possible latent fea-
tures in the values. In this sense, Discrete Fourier Transform (DFT) or
Discrete Wavelet Transform (DWT) can be applied to extract features
related to the time and order of the values. In addition, it is also possible
to calculate features based on the correlation between the available
values using algorithms like the Pearson correlation. Associating this
step with works in the literature, the authors of Sanchez-Rola et al.
(2018) used the mode of a series of 1000 values, and the authors
of Babun et al. (2021) and Wang et al. (2012) employed the average of
the measurements taken and the correlation in the generated values.

4.5. Evaluation approach selection

Once the features that will generate the fingerprint have been
obtained, it is necessary to define the ML/DL approach to be fol-
lowed (Usuga Cadavid et al., 2020). There are two possibilities here: a
classification-based approach, in which each device in the environment
will be associated with a label and one classifier is trained to recognize
these labels; and an anomaly detection-based approach, where the
data from each device is labeled as ‘‘normal’’ and a separate model is
generated for each of them.

This decision must be made taking into account both the scenario
(number of devices, variety of devices, possibility of adding or re-
moving devices) and the features that have been collected (similarity
of values between devices, number of features, etc.). Thus, an en-
vironment with a low number of devices may benefit from the use
of classification algorithms, while more dynamic environments with
a large number of devices will need more varied features and will
benefit from anomaly detection algorithms. Here, the scalability and
efficiency of the approach are better if no retraining is needed each
time a device joins or leaves the scenario. In the literature, solutions
have been found with both approaches, applying classification perspec-
tives (Babun et al., 2021) or generating a statistical model per device
and confronting the new fingerprints to it when identification is to be
performed (Sanchez-Rola et al., 2018).

4.6. Model generation and evaluation design

Once the desired approach has been selected, either classification or
anomaly detection, it is necessary to train ML/DL algorithms and define
the metrics that will be used in the identification. This step should be
carried out considering the efficiency in the evaluation process and the
security against possible data-based attacks to the models.

There is a wide variety of algorithms that can be considered in this
step, differentiating between traditional ML algorithms and DL algo-
rithms based on neural networks (Usuga Cadavid et al., 2020). Starting
from classification, algorithms such as Random Forest, k-Nearest Neigh-
bors, eXtreme-Gradient Boosting (XGBoost), Support Vector Machines
(SVM), or Multi-Layer Perceptron (MLP) can be used. From the anomaly
detection prism, Isolation Forest, Local Outlier Factor (LOF), One Class-
SVM, or Autoencoders are good alternatives as well. At this stage, it is
also worth considering the application of algorithms focused on time
series (Usuga Cadavid et al., 2020), depending on whether there are
time-based dependencies between the values. Once the algorithms to
use have been selected, it will be necessary to train and fine-tune the
hyperparameters that give the best results in each of them. Note that
these hyperparameters will vary according to the selected algorithms.
In addition, the model predictions are usually one per vector, so they
cannot be used directly to give a decision during the evaluation and
identification of the device. In this sense, it is common to determine a
threshold based on the model performance from which the device under
evaluation will be accepted as the legitimate one. This threshold can
be defined using numerous equations or conditions, such as defining
the 50% of the values being recognized as legitimate, as done by the
authors in Sanchez-Rola et al. (2018). Common metrics to consider on
this step are accuracy, true positive rate (TPR), false positive rate (FPR),
or F1-Score, among others (Usuga Cadavid et al., 2020).

At this point, it is worth noting that although this methodology has
been designed primarily for ML/DL algorithms due to their current
prominence in many research fields, it could be possible to include
in this step other statistical algorithms, or even some self-developed
algorithms as in Babun et al. (2021).

4.7. Device evaluation and identification decision

This step is only carried out in the evaluation phase and involves
generating new behavioral data of the device following the same
methodology as during the training phase, repeating steps B, C, and
D.

Once the new dataset is generated, it is used to identify the device,
determining whether it is the same device used during training or not.
To this end, data will be evaluated using the ML/DL models previously
generated, so that one result per vector is obtained. Then, the rule
determined in the previous step will be applied, either based on a
threshold or another equation to give a final decision on the device
identification.

5. Methodology validation

This section validates the suitability of the proposed methodology
by implementing a Proof-of-Concept (PoC) on a realistic scenario com-
posed of 20 identical single-board devices. In particular, the devices are
15 Raspberry Pi 4 Model B 2 GB (RPi 4) and 10 Raspberry Pi 3 Model
B+ (RPi3) running identical software images, with Raspbian 10 (buster)
as OS and 5.4.83 as Linux kernel version. The operating systems ran
in head-less mode, i.e., without a graphical environment or output to
a display, a common configuration in SOC devices deployed in IoT.
Next, it is detailed how the methodology has been implemented in the
previous scenario, describing the decisions made in each of the defined
steps. The language used has been Python and the code is available
in Sánchez Sánchez (2021), for reproducibility sake.
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Fig. 3. Fingerprint evaluation TPR during validation per device and model.

A. Hardware Component Selection. As a starting point, the physical
oscillators available in the RPi4 and RPi3 were analyzed. The result
of this study concluded that one oscillator is shared between the SoC
components, running at 54 MHz in RPi4 and 19.2 MHz in RPi3, and
the USB controller running at 25 MHz in both models (Embedded Linux
Wiki, 2021). Since accessing the frequency of the USB oscillator from
the device is not simple, the selected components were the VideoCore
VI GPU and the ARM Quad-core Cortex-A72 CPU for RPi4 and Video-
CoreIV GPU and the ARM Quad-core Cortex-A53 for RPi3. Although
they share the base oscillator (GPU and CPU), their frequencies are
given by different PLLs.

B. Component Isolation and Stability Assurance. Both the CPU and
GPU work at varying frequencies depending on the load on the device.
So, to guarantee the stability of the signatures, it is needed to ensure
that frequency is fixed. For the validation, the RPi4 CPU frequency was
set to 1.5 GHz and the GPU one to 500 MHz, while the RPi3 CPU fre-
quency was set to 1.4 GHz and the GPU one to 400 MHz, the maximum
values of both by default (without overclock). To do this, the Turbo
Mode was enabled by adding force_turbo=1 in /boot/config.txt. After
that, one of the CPU cores was isolated to be used in the fingerprint
generation, using the options in /boot/cmdline.txt, preventing processes
from being assigned to it.

C. Data Gathering. To measure the variation of behavior between
components, it was compared how the cycle counters of each com-
ponent (CPU and GPU) vary with respect to the other. To do this,
sleep, random number generation, and hash functions were selected. As
the validation prototype was implemented in Python, time.sleep() was
used for sleep execution, os.urandom() was used for random number
generation, and hashlib.sha256() was used to hash a string. In particular,
these functions were sequentially executed in the CPU and the number
of GPU cycles that occurred during each function execution was mea-
sured. To interact with the GPU, Idein’s py-videocore6 library (Idein,
2021b) was used in RPi4. Concretely, the CORE_PCTR_CYCLE_COUNT
GPU counter was the register monitored. In the case of RPi3, Idein’s py-
videocore (Idein, 2021a) library was used to monitor the
QPU_Total_idle_clock counter (as the RPi3s were in headless mode).
The data gathering procedure is summarized in Algorithm 1. For the
data collection, the sleep function time t was set to 120 s, as the
variations between CPU and GPU are presumably low, a fixed string
was set for the hash function, and the number on measurements
(n_measurements) was set to 400. It is important mentioning that these
values were adjusted according to the results in later steps. Other
configuration parameters such as t=60 s were tested providing with
slightly worse results. Additionally, the use of TEE to run the algorithm

Algorithm 1: CPU/GPU data acquisition algorithm
Result: Set of GPU/CPU performance measurements.
result_set={};
for n in n_measurements do

#Sleep cycle counter
GPU_CYCLE_COUNT=0;
sleep(t);
sleep_gpu_cycles=GPU_CYCLE_COUNT;

#Random number generator cycle counter
GPU_CYCLE_COUNT=0;
random_number_gen();
random_gpu_cycles=GPU_CYCLE_COUNT;

#Hash cycle counter
GPU_CYCLE_COUNT=0;
hash("Test string");
hash_gpu_cycles=GPU_CYCLE_COUNT;

#Add measurements to result set
result_set.append("sleep_gpu_cycles,
random_gpu_cycles,hash_gpu_cycles");

end

was considered, however the ARM TrustZone instance available in RPi
is simulated only (TrustedFirmware.org, 2012).

D. Data Preprocessing and Feature Extraction. The data gathering pro-
cess was repeated a total of ten times per device, for testing purposes,
with different temperature conditions and performing several reboots
between the generation of each fingerprint (set of measurements).
Then, the 400 measurements of each fingerprint were grouped in
different sliding windows ranging from 10 to 100 values in jumps
of 10 values (10 different sliding windows in total). Afterwards, sev-
eral statistical features were calculated for each window-based group
and concatenated together. Concretely, the statistical values calculated
were: minimum, maximum, mean, median and sum. Following this ap-
proach, the resultant vectors for training and evaluation have a size
of 150 (3 data gathering functions * 10 different sliding windows * 5
statistical features). Table 3 depicts the final set of features extracted
from this step.

E. Evaluation Approach Selection. Due to the staticity of the test
environment, as the number of devices do not change in time, it was
decided to follow an approach based on classification ML algorithms
combined with a threshold on the True Positive Rate (TPR) that would
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Table 3
Feature set extracted for validation.

Operation
collected

Python code
function

Sliding
windows

Statistics
extracted

No.
features

Sleep 120 s time.sleep(120) 10 Sliding
windows.

Minimum,
maximum,

50

Random number gen. os.urandom() Group sizes:
10, 20, 30, 40,

mean,
median,

50

String hashing hashlib.sha256(str) 50, 60, 70, 80,
90, 100

sum 50

Total 150

Table 4
Classification algorithms and hyperparameters tested.

Model Hyperparameters tested Avg TPR

Naive Bayes No hyperparameter tuning required 87.29%

k-NN 𝑘 ∈ [3, 20] 71.40%

SVM 𝐶 ∈ [0.01, 100], 𝑔𝑎𝑚𝑚𝑎 ∈ [0.001, 10]
𝑘𝑒𝑟𝑛𝑒𝑙 ∈ {‘𝑟𝑏𝑓 ’, ‘𝑙𝑖𝑛𝑒𝑎𝑟’, ‘𝑠𝑖𝑔𝑚𝑜𝑖𝑑’, ‘𝑝𝑜𝑙𝑦’}

89.65%

XGBoost 𝑙𝑟 ∈ [0.01, 0.3], 𝑚𝑎𝑥_𝑑𝑒𝑝𝑡ℎ ∈ [3, 15]
𝑚𝑖𝑛_𝑐ℎ𝑖𝑙𝑑_𝑤𝑒𝑖𝑔ℎ𝑡 ∈ [1, 7], 𝑔𝑎𝑚𝑚𝑎 ∈ [0, 0.5],
𝑐𝑜𝑙𝑠𝑎𝑚𝑝𝑙𝑒_𝑏𝑦𝑡𝑟𝑒𝑒 ∈ [0.3, 0.7]

91.92%

Decision Tree 𝑚𝑎𝑥_𝑑𝑒𝑝𝑡ℎ ∈ [𝑁𝑜𝑛𝑒, 5, 10, 15, 20]
𝑚𝑖𝑛_𝑠𝑎𝑚𝑝𝑙𝑒𝑠_𝑠𝑝𝑙𝑖𝑡 ∈ [2, 3, 4, 5]

86.47%

Random
Forest

𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓 _𝑡𝑟𝑒𝑒𝑠 ∈ [50, 1000]
𝑚𝑎𝑥_𝑑𝑒𝑝𝑡ℎ ∈ [𝑁𝑜𝑛𝑒, 5, 10, 15, 20]
𝑚𝑖𝑛_𝑠𝑎𝑚𝑝𝑙𝑒𝑠_𝑠𝑝𝑙𝑖𝑡 ∈ [2, 3, 4, 5]

91.64%

MLP 𝑙𝑎𝑦𝑒𝑟𝑠 ∈ [1, 3], 𝑛𝑒𝑢𝑟𝑜𝑛𝑠_𝑙𝑎𝑦𝑒𝑟 ∈ [10, 100],
𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 ∈ [32, 128, 256, 512]

85.32%

delimit the minimum number of successfully classified vectors. Besides,
F1-Score is also calculated to validate the classification performance of
the models. (TP: True Positive, FP: False Positive, TN: True Negative,
FN: False Negative).

𝑇𝑃𝑅∕𝑟𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(1)

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 𝑇𝑃
𝑇𝑃 + 1

2 (𝐹𝑃 + 𝐹𝑁)
(2)

F. Model Generation and Evaluation Design. For the model generation,
six fingerprints of each device were used as separate training in order
to have cross-validation. The selected algorithms were Random Forest,
Decision Tree, k-NN, XGBoost, Naive Bayes, SVM and MLP. After
hyperparameter optimization (see Table 4), using cross-validation with
the fingerprints used for training, the best performing algorithm was
XGBoost (lr=0.1, max_depth=20, gamma=0.01, colsample_bytree =0.5),
giving an average TPR of 91.92%, ranging from 100% in the best case
to 55% in the worst (a random predictor would give 4% for each device,
as the model can be easily identified based on device frequency). Fig. 3
shows the results per algorithm and device. This value varies highly,
as some of them seem to be more similar between them. Based on
the previous results, a threshold of 50% in the assigned classes in
evaluation can be defined to give the identification decision, so that
if half of the vectors are correctly evaluated, the device is recognized
as legitimate.

As Fig. 3 depicts, the performance of the classifiers when identifying
the devices is not homogeneous and they are able to classify better
some devices than others. To explore more in detail this aspect, Fig. 4
shows the density plots for the CPU and GPU skew after the sleep
function execution. In the vertical dotted line, the median of the distri-
bution is shown. It can be appreciated how the skew of some devices
varies, being more similar between some of them. Concretely, for the
RPi4 number 10, the one with the worst classification performance in
Fig. 3, it can be seen in Fig. 4 how the median of its distribution is
almost identical to the RPi4 number 12. Although only one of the three
functions executed is plotted due to space constraints, this analysis
demonstrates how some devices are more similar to each other than
others, a factor that influences the scalability of the solution, so that
for larger deployments, a greater number of functions or data sources
would be necessary.

G. Device Evaluation and Identification Decision. In the present PoC,
this phase was performed with the four fingerprints of each device
not used for the previous phase. In this step, the normalization was
repeated with the same values used to generate the model, and the
vectors containing the same features were evaluated using the XGBoost
model trained previously. Using the 50% threshold as explained above,
all the devices were correctly identified without any device erroneously
identified as another one. Fig. 5 shows the average confusion matrix for
the four fingerprints used for testing, using XGBoost as classifier. The
labels are defined as the device model followed by its MAC address.
The evaluation is done by grouping together devices within the same
model, as RPi3 and RPi4 have different running frequencies in the
components leveraged and they can be easily differentiated. ≈93% and
≈92% average F1-score is achieved for RPi4 and RPi3, respectively.

As conclusion, it has been demonstrated the performance of the
proposed methodology in an environment with real devices. Still, this
is only a PoC and its performance could be substantially improved
by extracting other data from devices and generating more elaborate
features.

6. Discussion, lessons learned and limitations

This section compares the proposed methodology with the solutions
available in the literature. After that, it discusses the limitations of the
proposed solution and provides some lessons learned.

6.1. Literature comparison

Despite the solutions discussed in Section 2 do not follow a common
methodology, many of them implement certain steps proposed in this
work. Table 5 compares the proposed methodology and related work
using on-device components for identification. As can be seen, all works
performing identification utilize a threshold (Step F), defined based
on different statistical approaches. Besides, none of the approaches
employed ML/DL algorithms (Step F) and many of them did not con-
sider hardware isolation properly or the usage of fixed component
frequencies (Step B).

After the theoretical comparison, it is relevant to analyze the most
similar and comparable solutions from a common prism. Although most
of the solutions analyzed in Section 2 use components that are not avail-
able on the RPi4 or RPi3, three solutions, Dong et al. (2019), Nakibly
et al. (2015) and Sanchez-Rola et al. (2018), can be adapted to the
present scenario and methodology. Table 6 compares the methodology
approach and the results of its validation with four implementations
inspired by the works found in Section 2. Besides, it highlights which
fingerprint properties were not met, resulting in erroneous device
identification.

The first of these approaches was inspired by Dong et al. (2019),
only the CPU was selected as a component but making the fingerprint
of each of its cores separately by using thread affinity. The features to
be obtained were statistics based on the time taken to perform small
operations (string hash and random number generation) on each of the
cores. Using LOF as an anomaly detection algorithm and one model per
device, the identification was possible by setting a threshold of 50%.
However, the reboot of the devices caused the fingerprints to change
and it was not possible to perform the identification due to the new
kernel process scheduling, something that may also be affecting the
proposed solution in Dong et al. (2019). The same problem occurred
in a second tested approach inspired by Nakibly et al. (2015). In
particular, each CPU core was compared with the GPU separately in
a concurrent manner and executing short operations. Here, different
operations of variable complexity were performed in the GPU while
the execution time was measured using the CPU. In this case, the
evaluation also followed an anomaly detection-based approach, being
LOF the algorithm with the better results. Again, it was possible to
identify the devices consistently, now using a threshold around 60%,
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Fig. 4. Density plot for the GPU cycle counter in RPi4.

Table 5
Analogy between hardware-based fingerprinting solutions in the literature and the proposed methodology.

Work Step A Step B Step C Step D Step E Step F Step G

Salo (2007) RTC, DSP, CPU –
CPU cycles in one
second (measured
with DSP and RTC)

Raw values –
Statistical (t-test),
𝑝 <= 0.05 threshold

98.7%–93.3%
identification

Sanchez-Rola et al.
(2018) RTC, CPU Transactional

memory
Execution time
of short functions Mode-based matrix – Statistical comparison, 50%

similarity threshold
Correct
identification

Wang et al. (2012) Flash memory
Isolation of one
page in flash
memory

Bit programming
errors (flip from 1
to 0)

Error order per bit –
Pearson correlation,
0.5 threshold

Estimated
4.52 × 10−815
FPR and
2.65 × 10−539 FNR

Dong et al. (2019) CPU Thread affinity CPU usage while executing
a cyclical tasks Raw values – Dynamic Time Warping

algorithm, 0.3244 threshold
93.43% uniqueness
(Shannon entropy)

Nakibly et al.
(2015) CPU, GPU – Number of frames per 5 s Entropy and

statistics – Statistical

No evaluation,
partial
differentiation
capabilities

This work CPU and GPU Core isolation,
Fixed frequency

Sleep for 120 secs,
Random num. gen., hash

Sliding
window-based
statistical features

Classification XGBoost, 50%
threshold

Perfect
Identification
(91.92% avg. TPR)

Table 6
Comparison of the validation approaches implemented.

Approach Step A Step B Step C Step D Step E Step F Step G Properties not
met

Dong et al.
(2019)-inspired
approach

CPU Thread affinity Short functions Raw values Anomaly
Detection

LOF, 50%
threshold

Identification until
device reboots (69.4%
avg. TPR)

Stability

Nakibly et al.
(2015)-inspired
approach

CPU and
GPU – Different GPU

operations Raw values Anomaly
Detection

LOF, 60%
threshold

Identification until
device reboots (89.6%
avg. TPR)

Stability

Sanchez-Rola
et al.
(2018)-inspired
approach A

CPU – Short functions Window-based
statistical features Classification XGBoost, 50%

threshold
No identification
(27.5% avg. TPR)

Uniqueness,
Diversity,
Stability

Sanchez-Rola
et al.
(2018)-inspired
approach B

CPU – Short functions Window-based
statistical features

Anomaly
Detection

LOF, 50%
threshold

No identification
(19.8% avg. TPR)

Uniqueness,
Diversity,
Stability

This work
(Section 5)

CPU and
GPU

Core isolation,
Fixed frequency

GPU-measured CPU
operations

Window-based
statistical features Classification XGBoost, 50%

threshold
Perfect Identification
(91.9% avg. TPR) –

until they are rebooted. Finally, two different approaches were tested
inspired by Sanchez-Rola et al. (2018). Both share the fact that the data
collected was based on short functions executed in the CPU without
considering stability measurements. They differ in the evaluation ap-
proach, one using anomaly detection and the other using classification.
These approaches achieved the worse performance, as the solutions
could not identify the devices even without rebooting them.

From these results, it can be concluded that the stability of these
approaches is not sufficient for dynamic IoT scenarios where the de-
vices operate in a typical way (i.e. devices are restarted from time to
time and power can go out). In contrast, they would be useful in IoT

environments where device reboots are not possible, such as in the
control of electrical or security systems.

6.2. Lessons learned and limitations

From the above comparison and the tests performed, valuable con-
clusions are drawn, both in the form of lessons learned and possible
limitations of the proposed methodology. Regarding lessons learned,
the main ones are:

Component isolation is critical. As Table 6 shows, it can be seen
that isolating the measurements from external processes is crucial to

A methodology to identify identical single-board computers based on
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Fig. 5. Test confusion matrix for device identification using XGBoost.

ensure the stability of the fingerprinting process. In this sense, in cases
where the conditions of the components were not stable, it was not
possible to reliably identify them after device rebooting.

Rebooting can have impact on the fingerprints. During the
testing of literature-based validation approaches (see Table 6), it was
observed that the restart of the devices has an impact when the fin-
gerprinting program is not isolated from other processes, probably due
to the effect of the process scheduler. In contrast, this issue was not
present in the approach of Section 5, as the data collection process
was properly isolated from the noise introduced by other processes in
the device. From this validation, it an be concluded that the robustness
property against the negative effects of other processes running in the
device is achieved.

Temperature does not seem to affect the components selected
for validation. The above tests have been performed at different
temperature conditions and this condition does not seem to affect the

results, possibly because by using integrated components on the same
chip, it affects the base frequency and overall performance equally.
Therefore, the robustness property is met based on the temperature
context. Actually, temperature was also measured during the data gath-
ering of Section 5. Using it as a feature, the average TPR for XGBoost is
increased from 91.92% to 93.46%. Therefore, this information can be
added as a correlation feature, incorporating supplementary informa-
tion to the identification process. For different devices, Fig. 6 shows the
density plot of the correlation in different devices of the temperatures
and the GPU counter value after a 120-second CPU sleep. It can be
seen that each device has a different plot shape and temperature is not
influencing that the devices generate a similar fingerprint.

In terms of limitations of the methodology, the following have been
identified after its design and validation:

The methodology implementation is highly dependent on the
hardware model. The implementation of the present methodology,
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Fig. 6. 3D density plot of temperature/GPU cycle counter value for different devices executing the 120 s-sleep function.

being based on the hardware components available in the devices,
is highly dependent on the libraries needed to interact with them.
Thus, implementations of the methodology may not be compatible
between different models of single-board devices if their components
are different, so it would be necessary to adapt the code.

Some steps might need an exploratory analysis. It is difficult to
determine which hardware behavior measurements to take or which
features to extract a priory. So, the implementation of the methodology
may require several exploratory iterations to find a combination that
meets all the properties needed in the generated fingerprint. This trial-
and-error analysis can be highly reduced by analyzing the leveraged
devices properties, different component and running frequencies. As
every chip has imperfections, the challenge is how to measure them
properly. In Section 5, a successful application of the methodology has
been provided, which serves as a guide and recommendation for future
applications.

Scalability in large deployments. Manufacturing errors and vari-
ations are within the accepted tolerance range accepted by the man-
ufacturers. Therefore, using these variations for identification in large

deployments makes a single source of data possibly not sufficient (Pol-
cák and Franková, 2015). Thus, depending on the number of devices to
be individually identified, a greater number of components and features
should be employed to generate unique device fingerprints. Therefore,
scalability property arises as one of the most difficult properties to be
met.

6.3. Insights for real-world implementations

Based on the previous set of lessons learned and limitations, this
section gives some implementation ideas for future researchers that
may deploy the proposed methodology in real-world IoT scenarios
based on SBCs. Examples of these scenarios can be spectrum crowd-
sensing, with projects such as ElectroSense (Rajendran et al., 2017) or
agriculture environments where SBCs are employed to control sensors
and actuators. The main guidelines for these scenarios are:

1. Investigate how to get the hardware counters. After checking the
available hardware components that might be used for finger-
printing, a critical step is to check the firmware managing them
and how their performance counters can be gathered.

A methodology to identify identical single-board computers based on
hardware behavior fingerprinting
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2. Use heterogeneous functions for data collection. As selecting the
executed functions to perform the fingerprint can be seen as an
exploratory step, selecting both long and short time execution
functions is a good decision as the collected data can be later
processed and compare the results from both approaches.

3. Expend time in feature extraction analysis. As the tolerance
errors in the hardware components are between constrained lim-
its, the collected performance values will be similar. Therefore,
extracting useful metrics (such as the median in the validation
of Section 5) is a critical step to separate the distributions of the
collected data and perform the device identification.

4. Use tree-based ML algorithms as the initial evaluation approach.
In the validation section, these methods provided good per-
formance with relatively low complexity in the hyperparame-
ter tuning. Therefore, before exploring more complex DL solu-
tions, tree-based ML methods can give the desired performance
keeping a lower complexity in the fingerprinting solution.

7. Conclusions and future work

This paper proposes a methodology composed of seven steps that
allow identifying identical single-board devices (same hardware and
software configuration) used in heterogeneous IoT scenarios. These
seven steps are grouped into two main phases, one to generate a be-
havioral fingerprint and another to evaluate it and identify the device.
This work also presents the threat model affecting single-board device
identification and seven properties that solutions dealing with identical
device identification based on behavioral fingerprint must consider:
uniqueness, stability, diversity, scalability, efficiency, robustness and
security. The proposed methodology has been successfully validated in
a real environment composed of 25 identical Raspberry Pi 4 Model B
and Raspberry Pi 3 Model B+ using ML techniques for data processing.
These devices were perfectly identified using a XGBoost model trained
using features derived from the variation in performance between
their CPU and GPU by setting a 50% TPR threshold. Besides, this
work compared the methodology identification performance with other
implementations inspired in the literature works and provided some
lessons learned and limitations.

As future work, it is planned to validate the methodology in larger
scenarios with more devices and types, defining new features to be
obtained and other ML/DL algorithms to evaluate the scalability of the
solution in larger and real-world environments. The performance of the
solution in a dynamic scenario is another key aspect to be researched.
Furthermore, it is desired to explore the usage of TEEs when gener-
ating the fingerprint, guaranteeing the security of the measurements
by isolating the fingerprinting program from the rest of the system
processes. Besides, we also plan to perform adversarial attacks against
the proposed validation PoC, improving its resilience and performance.
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A B S T R A C T

In today’s computing environment, where Artificial Intelligence (AI) and data processing are
moving toward the Internet of Things (IoT) and Edge computing paradigms, benchmarking
resource-constrained devices is a critical task to evaluate their suitability and performance.
Between the employed devices, Single-Board Computers arise as multi-purpose and afford-
able systems. The literature has explored Single-Board Computers performance when running
high-level benchmarks specialized in particular application scenarios, such as AI or medical
applications. However, lower-level benchmarking applications and datasets are needed to enable
new Edge-based AI solutions for network, system and service management based on device
and component performance, such as individual device identification. Thus, this paper presents
LwHBench, a low-level hardware benchmarking application for Single-Board Computers that
measures the performance of CPU, GPU, Memory and Storage taking into account the com-
ponent constraints in these types of devices. LwHBench has been implemented for Raspberry
Pi devices and run for 100 days on a set of 45 devices to generate an extensive dataset that
allows the usage of AI techniques in scenarios where performance data can help in the device
management process. Besides, to demonstrate the inter-scenario capability of the dataset, a
series of AI-enabled use cases about device identification and context impact on performance
are presented as exploration of the published data. Finally, the benchmark application has
been adapted and applied to an agriculture-focused scenario where three RockPro64 devices
are present.

1. Introduction

Performance benchmarking has been an issue explored since the early days of computer science [1]. Knowing the capabilities
of a device is critical to create applications optimized for it [2]. In this sense, benchmarking has become a priority due to the
magnification of the number of online devices provoked by new technologies such as 5G, IoT or cloud. In addition, the explosion
of techniques such as Machine Learning (ML) and Deep Learning (DL), which usually require high computational power, has been
another key factor increasing the need for processing measurement applications. In this context, device performance benchmarking
is a research avenue that acquired a large momentum in the last years [3], especially in IoT and Edge computing paradigms.
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Benchmarking can be defined as an intentional stress introduced in a system to measure how the device behaves regarding a
determined set of metrics [4]. The main purposes of benchmarking are to (i) verify that the performance of a device is the promised
one and suitable for a certain activity such as running AI tasks, and (ii) model the internal behavior of a certain device to identify it or
verify that it is running properly [5]. Therefore, device benchmarking can be seen from two perspectives. First, as a high-level system
benchmarking that seeks to measure how a certain application works on the device in terms of performance or Quality-of-Service
(QoS), for example, in execution time or energy consumption [6]. Second, as a low-level hardware benchmarking, which goal is
to characterize the device components in a more precise way [7], so it is possible to differentiate devices or detect imperfections
and errors in the chips, among other options. ‘‘Low-level’’ indicates that the focus of the measurements is close to the physical level
of the components, measuring values such as frequencies and cycles instead of QoS (time and energy). An example of this type of
benchmarking would be to measure how many cycles it takes a processor to execute a certain simple task, measuring whether it
meets its specification and the necessary stability requirements.

Moreover, due to the explosion undergone by AI, and more specifically ML and DL [8], these techniques have also landed
in the IoT field, being applied in areas such as industry, network and service management or cybersecurity. Thus, the field of IoT
benchmarking also has the task of evaluating the performance of training and deploying ML/DL in these devices hardware. Numerous
solutions have explored the capabilities of IoT devices, mainly Single-Board Computers (SBC) such as Raspberry Pi, when running
different ML/DL algorithms and libraries [9], so this is an area with enough pedigree and many recent works [10]. However, low-
level hardware benchmarking and the application of ML/DL in the data generated from these benchmarks remain mostly unexplored
in the IoT field. This is an important task as critical functionalities are moving to the IoT and having the components of these devices
properly analyzed is essential.

Then, although many benchmarks have been proposed for SBCs in recent years, as [3] shows, some challenges are present in
the area, such as (i) many benchmarks are proposed but no exhaustive execution datasets are provided; (ii) all recent benchmarks
focus on high-level applications and none of them measures the performance of the hardware from a low-level perspective; (iii)
there is no work measuring the components performance from a different component of the same device, which is important to
avoid inconsistent values coming from the measured component (e.g. measure an execution time using the CPU as its own source
of timestamps), as it cannot notice its own inaccuracy; (iv) only a few solutions consider storage and memory in the benchmark,
most of them are focused on CPU QoS (execution time, computation and communication latency); and (v) none of the previous SBC
benchmark solutions consider GPU low-level performance for non-graphics processing.

In order to improve the previous limitations and fill the literature gap, the main contributions of the present work are:

• A low-level hardware component benchmarking application, namely LwHBench, which measures CPU, GPU, memory and
storage device performance from the device reference point. The benchmark is implemented as a proof of concept for Raspberry
Pi devices [11], taking into account the particularities of their hardware components.

• A comprehensive dataset acquired as a result of running the previous benchmark on a set of 45 Raspberry Pi of various models
for 100 days [12]. For data collection, a series of measures regarding the stability of the device performance have been taken,
setting the frequency of the components to fixed values and trying to reduce as much as possible the possible noise introduced
in the measurements by other processes running on the devices. This dataset contains a total of 4 GB of data (2 386 126
vectors), more than any other benchmark dataset in the literature, ready to be used in ML/DL-based applications by other
researchers in a wide variety of use cases.

• A set of potential use cases described as possible application scenarios for the benchmark and the published dataset. These use
cases are partially solved as a preliminary exploration of the dataset, so that other researchers know how to apply their ML/DL
algorithms. The code used in these use cases is also publicly available at [11]. Besides, these use cases are also demonstrated
in a real world IoT agriculture deployment using 3 RockPro64 devices, another SBC model.

The remainder of this article is structured as follows. Section 2 provides a review of the literature status regarding SBC
performance benchmarking. Section 3 describes the methodology and approach followed for the benchmark implementation and
generation of the dataset. Section 4 describes the functions executed in each one of the components considered, while Section 5
explores the collected data through a set of use cases. Section 6 depicts a real-world adaptation and deployment of the benchmark.
Section 7 draws the main strong points of the proposed method together with the drawbacks identified during the work development.
Finally, Section 8 draws the main conclusions of the present work and future research lines.

2. Related work

This section analyzes related work dealing with performance benchmarking, with a special focus on Edge computing and IoT,
and existing datasets regarding IoT device performance monitoring.

Regarding performance benchmarking, Varghese et al. [3] surveyed the evolution of this field from the early 90s to 2020,
with special consideration of Edge benchmarking since the 2010s. This survey shows that many performance benchmarking
applications have been published in recent years, most of them centered on SBCs, such as Raspberry Pi. The vast majority of
these applications focus on CPU and memory benchmarking [15], while only a few test additional resources [24], such as storage,
network or accelerators (GPU/TPU). Despite the usefulness to test devices from different brands and models, none of the existing
Edge performance benchmarks revised in [3] is focused on the extraction of low-level information capable of detecting hardware
imperfections or malfunctioning. In contrast, these existing benchmarks are based on the execution of complex or advanced
applications [17], such as AI libraries [9] or orchestrators, and not on fast execution code for low-level fingerprinting. Some
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Table 1
Comparison of IoT Benchmarking applications and datasets.

Solution Device type Monitored components Metrics Public data Open source

[13] SBC GPU Processing time, resource usage (%) ✗ ✗

[14] SBC CPU GFLOPS, energy ✗ ✗

[9] SBC/PC CPU, GPU, memory Processing time, mem speed, energy ✗ ✓

[15] Medical IoT CPU, memory Hardware Performance Counters ✗ ✓

[16] Cloud CPU, memory, network Processing time, network/mem speed ✗ ✗

[17] SBC CPU, memory, network Processing time, network/mem speed ✗ ✓

[18] Edge servers CPU N Instructions ✓(2.5 MB) ✓

[19] SBC CPU GFLOPS ✗ ✓

[20] IoT CPU Packet inter-arrival time ✓(1.5 GB) ✗

[21] IoT Radio transmitters Raw transmission data ✓(+50 GB) ✗

[22] SBC CPU GFLOPS, energy ✗ ✓

[23] Any SRAM and Flash memories Initial bit status ✓(To be published) ✓

This work SBC CPU, GPU, Memory, Storage Cycles counters and processing time ✓(4 GB) ✓

benchmarks [16] also measure the performance of cloud platforms oriented to the IoT, such as AWS Greengrass or Azure IoT Edge.
Regarding measurement metrics, most of the benchmarks use time-based metrics such as GFLOPS (Giga Floating Point Operations
per Second) for CPU or MB/s for memory and network, with only a few of them using more complex and low-level ones such
as Hardware Performance Counters [15]. Besides, although most benchmarking applications provide datasets with them (12 of
14 analyzed applications), only 5 out of 14 benchmarking applications use full open-source software, while 10 out of 15 use
commercial-grade software. Pincheira et al. [25] benchmarked six IoT hardware platforms in terms of support to blockchain-based
agriculture applications. Finally, [3] also shows that most high-level benchmarks use commercial or proprietary software in their
implementations.

In the area of low-level benchmarking, [13] evaluated the performance of the GPUs embedded in ARM SBCs, noticing
great improvements comparing the GPU performance to the CPU when doing mathematical operations, but with higher energy
consumption. Furthermore, [14] built a Raspberry Pi cluster and performed CPU and energy consumption testing to find the
best energy/price/performance model. Similarly, three clusters, each consisting of 16 different SBC models, were built in [22]
to benchmark the SBC performance in terms of computing and energy consumption. [19] followed a similar cluster-oriented
benchmarking but focusing on cryptography libraries. However, these benchmarks perform fairly simple metrics about performance
and do not publish their data, which do not enable the application of the generated data to new domains such as fingerprinting.
From a different domain, [26] explored recently the low-level benchmarking of quantum computers, an area gaining importance in
recent years that supports the need for lower-level hardware benchmarking.

Dealing with datasets about hardware performance, there are just a few examples available in the literature. Many benchmarking
applications include simple data samples [3]. One example is [18], which contains 2.5 MB of traces of different high-level
benchmarking applications executed in Edge servers. However, these are not exhaustive datasets collected during long execution
periods and are not suitable for ML/DL approaches due to their size constraints. Regarding datasets directly focused on low-
level performance fingerprinting, [23] contains fingerprints from different SRAM (Static RAM) chips, which were used in [27] to
perform individual identification. However, most SBC models do not include SRAM chips due to their higher cost. From a different
perspective, [21] contains radio spectrum measurements from different IoT devices, which can be employed to fingerprint their
transmission performance and properties. Similarly, [28] also contains raw IQ signals from 9 IoT devices that can be used for
fingerprinting tasks. Moreover, [20] presents inter-arrival time information from different wireless routers and IoT devices, and it
is aimed at individual and device type fingerprinting. In contrast, to the best of our knowledge, there is not any comprehensive
dataset regarding low-level performance fingerprinting or benchmarking of hardware components.

Table 1 shows a comparison between the different benchmarking applications and datasets found in the literature and the present
one. From the analysis made in this section, it is noticed that there is a gap regarding solutions focused on low-level benchmarking.
Most of the recent solutions focus on high-level application benchmarking, and the ones focusing on low-level performance only use
simple performance metrics and do not provide extensive datasets to enable ML/DL-based use cases or new applications. Moreover,
the datasets found in the literature are focused on other areas such as device identification, and not on hardware component
benchmarking.

3. Benchmark and dataset generation methodology

This section describes the methodology followed in order to implement the benchmark application and collect the samples
available in the dataset: providing the details of the scenario used for data collection; describing the components monitored and
how their performance is measured; detailing the libraries used to collect each metric; and finally, explaining the configuration
options and measures taken to ensure stability and avoid noise in the samples published.
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Table 2
Number, model and most relevant characteristics of the devices used for validation.

N RPi model Revision SoC CPU GPU Cache RAM SD

15 Raspberry Pi
4 Model B

1.1/1.4 BCM2711 1.5 GHz quad-core
64 bit ARM A72

500 MHz
Broadcom
VideoCore VI

2-way set associative 32 kB
and 48 kB level one
instruction and data caches,
respectively, and a 1 MB
unified level two cache

4 GB
LPDDR4

16 GB A1
Type 10
SandDisk
Ultra

10 Raspberry Pi
3 Model B+

1.3 BCM2837 1.4 GHz quad-core
64 bit ARM A53

400 MHz
Broadcom
VideoCore IV

2-way set associative 16 kB
level one instruction and data
caches, and 512 kB unified
level two cache

1 GB
LPDDR2

16 GB A1
Type 10
SandDisk
Ultra

10 Raspberry Pi
Model B+

1.2 BCM2835 700 MHz single-core
32 bit ARM
1176JZF-S

400 MHz
Broadcom
VideoCore IV

2-way set associative 16 kB
level one instruction and data
caches, and 128 kB unified
level two cache

500 MB
LPDDR2

16 GB A1
Type 10
SandDisk
Ultra

10 Raspberry Pi
Zero

1.3 BCM2835 1 GHz single-core
32 bit ARM
1176JZF-S

400 MHz
Broadcom
VideoCore IV

2-way set associative 16 kB
level one instruction and data
caches, and 128 kB unified
level two cache

500 MB
LPDDR2

16 GB A1
Type 10
SandDisk
Ultra

3.1. Deployment and configuration

For the LwHBench benchmark implementation and testing, a wide number of devices is required. In this sense, the benchmark
is executed, to collect the dataset, in a set of 45 physical devices composed of several models of Raspberry Pi (RPi) devices. Table 2
shows a summary of the devices employed for validation, their distribution and main characteristics.

All devices of the setup have identical software images, using Raspbian 10 (buster) 32 bits as OS and Linux kernel 5.4.83. The only
variation in the kernel version is related to the core architecture of each device model, ARMv6 for RPi1/Zero, ARMv7 for RPi3, and
ARMv8 for RPi4.

Besides, to reduce physical context as much as possible, all devices are located in the same lab room with identical cases and
aluminum heat sinks.

3.2. Monitored components

For reliable time/performance measurements of hardware components, the ideal setup is to use as reference a physical oscillator
independent of the component being measured (the frequency of the component is not dependent on the reference oscillator). RPi
devices include all the main processing components present in a normal computer, including oscillators. However, the number of
physical crystal oscillators is reduced to save costs. RPi4 only includes a SoC base oscillator running at 54 MHz and an oscillator
for the USB/Ethernet controllers running at 25 MHz. In contrast, RPi3/1/Zero only include one SoC base oscillator running at 19.2
MHz. Then, each component runs at a different frequency using Phase-Locked Loops (PLLs) for base frequency multiplication [29].

This condition implies that some auxiliary components which could be used as reference points, such as the Real-Time Clock
(RTC), are simulated. This fact makes it hard to accurately measure the performance and skew of the system from the device itself,
as a skew in the CPU timing will affect the time measurements that it is doing of itself.

However, each component can still show performance differences based on the multiplication factor applied to the base crystal
oscillator frequency in the associated PLLs. For this reason, each component used to measure the performance of the device is
monitored from another component of the device, measuring, in turn, the possible imperfections and deviations between the
components. More clearly, for example, the performance of code execution on the CPU is measured in terms of GPU cycles and
vice versa.

Following the previous approach, the components whose performance are monitored and stored in the dataset are:

• CPU. The execution time of code run in the CPU is measured by monitoring how many GPU cycles have elapsed during that
period of time. In this way, the skew between CPU and GPU can be accurately measured. Therefore, the formula to measure
CPU performance based on GPU cycle variation is:

𝐶𝑃𝑈𝑝𝑒𝑟𝑓 . = 𝛥𝐺𝑃𝑈𝑐𝑦𝑐𝑙𝑒_𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ⊢ 𝑡𝑐𝑝𝑢_𝑐𝑜𝑑𝑒_𝑒𝑥𝑒𝑐 (1)

• GPU. In the GPU, the performance of code executed in this component is measured using CPU-based time, just the opposite
way to the previous case.

𝐺𝑃𝑈𝑝𝑒𝑟𝑓 . = 𝛥𝐶𝑃𝑈𝑐𝑦𝑐𝑙𝑒_𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ⊢ 𝑡𝑔𝑝𝑢_𝑐𝑜𝑑𝑒_𝑒𝑥𝑒𝑐 (2)

• Memory. Here, memory read/write operations are also monitored in terms of CPU-based timing, as the RAM chip in RPi has
its own functioning frequency different to both the CPU and GPU.

𝑀𝑒𝑚𝑜𝑟𝑦𝑝𝑒𝑟𝑓 . = 𝛥𝐶𝑃𝑈𝑐𝑦𝑐𝑙𝑒_𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ⊢ 𝑡𝑚𝑒𝑚_𝑜𝑝𝑠 (3)
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• Storage. Storage performance measurement is done by input/output operations in the SD card attached to the device with the
software image.

𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝑝𝑒𝑟𝑓 . = 𝛥𝐶𝑃𝑈𝑐𝑦𝑐𝑙𝑒_𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ⊢ 𝑡𝑖𝑜_𝑜𝑝𝑠 (4)

3.3. Benchmark implementation

The LwHBench benchmark code is available in [11]. The data collection program has been implemented using Python 3, so it can
be executed as a portable script on any device with the required libraries installed. Besides, this selection has also been influenced
by the set of libraries available for CPU and GPU low-level interaction, as it is explained below.

For the GPU low-level interaction and register monitoring, Idein py-videocore [30] and py-videocore6 [31] are employed for
VideoCore IV and VideoCore VI GPU-based devices, respectively. To measure GPU cycles, different registers should be considered
depending on the GPU version. In particular, the register monitored in VideoCore VI is CORE_PCTR_CYCLE_COUNT, while in
VideoCore IV the monitored registers are the performance counters 13-19 [32].

When accessing the CPU cycle counter, there are two different possibilities. The first is to generate a kernel module to enable
reading the cycle counter from userspace. The second consists of using the interfaces provided by performance monitoring tools such
as perf. In the code, both approaches are tested.

Regarding the kernel module, the CPU cycle counter is stored in ARMv7 and ARMv8 AArch32 processors using c15 Cycle Counter
Register (CCNT) and, by default, it can only be read in kernel space. Therefore, a custom kernel module is implemented to allow
access to this register (enable_ccr folder in [11]). Once compiled, the kernel module should be loaded using insmod command
with root privileges. Finally, the register can be read using the assembly operation MRC p15, 0, <Rd>, c15, c12, 1, where <Rd>
represents the variable where to store the register value. To access perf time counting, the easiest method is to use the time built-in
Python library, which includes perf_counter_ns() function to retrieve time in nanoseconds using the previous counter. After some
experimentation, it was decided to follow the perf -based approach due to its simplicity compared to using a kernel module and
assembly code, and its similar consistency in the performance measurements.

Moreover, to automatize the data collection process, a system service has been implemented (data_collection.service in the code
folder). This service is in charge of the automated data collection script launching and periodic system rebooting in order to reduce
the noise introduced by possible factors related to the system running time. Concretely, each device is rebooted after 800 samples
are collected.

3.4. Device setup for component stability and isolation

One of the most critical aspects of collecting reliable samples is to ensure that the conditions in the device are as constant as
possible, reducing potential sources of noise in the samples. To this end, a number of measures are taken to counteract the impact
of other processes running on the device. Specifically, the measures implemented to ensure stability are:

• Fixed CPU/GPU/RAM frequency. By default, the kernel dynamically manages the frequency of the device components to save
energy when no high task load is present. However, this dynamicity affects to the stability of the performance measurements.
Therefore, a fixed frequency is required in the components to measure. In RPi, the frequency of the components can be set to
be constant at the maximum using turbo_mode=1 boot option. Besides, if only a fixed CPU frequency is wanted, performance
can be used as scaling_governor option.

• Kernel level priority. Enabling a high priority for the data collection process minimizes the interruptions caused by other
programs, removing noise and inaccurate measurements. The best option here is to set the process with the highest scheduling
priority. If root privilege is available, using the command chrt -rr XX when launching the program enables the ‘‘real-time
scheduling’’ of the process, just like a kernel process. If it is not possible to use kernel priority, another option is to use nice
-n -20 to set the maximum user level priority.

• Disable Memory Address Space Layout Randomization (ASLR). Memory random address organization can affect the
stability of memory-related measurements; therefore, this characteristic was disabled during data collection. It can be done
using sysctl kernel.randomize_va_space=0 command, but note that this should be only enabled during memory-
related data acquisition, as having ASLR disabled increases the facility to perform memory-based attacks such as buffer
overflows.

• Profiled Guided Optimization (PGO). PGO is a compiler option intended to improve runtime performance based on static
program analysis of code. Python interpreter can be compiled to use PGO by using –enable-optimizations option. Furthermore,
Python garbage collector is also disabled to avoid unintended tasks during the execution.

• Fixed hash seed. As hash-based CPU performance measurements are generated, using a fixed seed improves the deterministic
characteristics of the function. This is set using PYTHONHASHSEED=0 (or any other number) as environment variable when
running the data collection script. This option should only be used for benchmark, as it can lead to an attacker causing a
Denial-of-Service (DoS) by using worst-case performance inputs to the function, which have 𝑂(𝑛2) complexity.

• Core isolation. For the multi-core CPU devices, e.g. RPi3 and RPi4, one core is isolated from the rest to execute the benchmark
on it using cpu affinity. This setup avoids the (kernel) interruptions caused by other processes running in the same CPU core
while the data is being generated. Concretely, the kernel options employed were: i) isolcpus, to avoid the kernel to schedule
any process in that core; ii) nohz_full, to tell the kernel to remove as much kernel noise as possible, such as tick interrupts; and
iii) rcu_nocbs, to offload Read-Copy-Update (RCU) threads and callbacks.
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Table 3
Features gathered during data collection.
Component Function Monitored feature

– Timestamp Unix timestamp
Temperature Device core temperature

CPU 1 s sleep GPU cycles elapsed during 1 s CPU sleep
2 s sleep GPU cycles elapsed during 2 s CPU sleep
5 s sleep GPU cycles elapsed during 5 s CPU sleep
10 s sleep GPU cycles elapsed during 10 s CPU sleep
120 s sleep GPU cycles elapsed during 120 s CPU sleep
String hash GPU cycles elapsed during a fixed string hash calculation
Pseudo random GPU cycles elapsed while generating a software pseudo-random number
Urandom GPU cycles elapsed while generating 100 MB using /dev/urandom interface
Fib GPU cycles elapsed while calculating Fibonacci number for 20 using the CPU

GPU Matrix mul CPU time taken to execute a GPU-based matrix multiplication
Matrix sum CPU time taken to execute a GPU-based matrix summation
Scopy CPU time taken to execute a GPU-based graph shadow processing

Memory List creation CPU time taken to generate a list with 1000 elements
mem reserve CPU time taken to fill 100 MB in memory
csv read CPU time taken to read a 500 kB csv file

Storage read ×100 100 CPU time measurements for 100 kB storage read operations
write ×100 100 CPU time measurements for 100 kB storage write operations

4. LwHBench benchmark and dataset

This section details the operations executed by the benchmark and the events collected as features for the generation of the dataset
associated with this paper. Note that this list can be updated by any other researcher just changing the code of the benchmarking
script [11].

As detailed in Section 3, the components leveraged for benchmarking are: CPU, GPU, Memory and Storage. They have been
selected because they are the most common hardware elements in any SBC (and generic computer). Table 3 shows the list of
features collected for each device component. As it can be appreciated, any of the operations measures typical processing power
metrics such as GFLOPS. This is because they are not well suited for low-level component characterization. Besides, they have already
been gathered in several previous studies, as shown in Section 2. Concretely, the operations implemented as proof of concept are:

• CPU. Different sleep times (from 1 to 120 s) are monitored, trying to measure the accuracy for time keeping in the component.
Additionally, some quick-execution functions are monitored: hash calculation of a string, pseudorandom number generation,
random number generation using /dev/urandom interface, and Fibonacci number calculation.

• GPU. Three simple operations are monitored in terms of CPU time: a matrix multiplication, a matrix summation and the
processing of a graphic shadow.

• Memory. The operations executed are the generation of a list object with 1000 integers, the reserve of 100 MB of data and
the time to read a 500 kB csv file. These operations are measured also in terms of CPU time and represent 3 features in the
generated data vector.

• Storage. 100 read and write operations of 100 kB of data are monitored in the device SD card, generating 200 features in total.

In the dataset [12], each value of Table 3 represents one feature in the vectors (each dataset entry). Besides, each vector ends
with the MAC address of the device, which can be used as the label in supervised ML/DL tasks. The data of each device is stored
in a csv file, whose name is the MAC address. Additionally, a text file named MAC-Model.txt contains the association between the
MAC and the model of each device in the testbed.

For data collection purposes, an additional Linux service has been developed (data_collection.service). It is in charge of launching
LwHBench when the device is booted and it takes care of rebooting the device once 800 samples have been collected. This reboot
is done to minimize the possible impact of running time in the collected data (e.g. memory usage of persistent processes). Fig. 1
shows the flow diagram of the data collection performed in each device.

A total of 2 386 126 vectors are available in the dataset, making 4 GB of data. Fig. 2 shows the number of samples per hour from
each device model during the data collection period. It can also be seen how some devices went offline during the data collection,
corresponding to each of the downward jumps shown in the RPi4 and RPi3 graphs. The dataset contains per device model: 505 584
samples of RPi 1B+, 784 095 samples of RPi4, 547 800 samples of RPi3 and 548 647 samples of RPiZero. With more than two million
vectors, the present dataset is the one with the highest number of samples among those found in the IoT benchmarking literature.
Besides, Fig. 3 shows the number of samples per device contained in the dataset. The number varies according to the device model,
as more powerful ones generate more data in the same time. Besides, some devices suffered power outages during data collection
or they were added lately to the set of available devices. Still, on average, more than 50 000 vectors per device are present. It can
also be seen that 5 devices have less data due to interruptions during the data collection process.

LwHBench: A low-level hardware component benchmark and dataset for
Single Board Computers

58 PhD Thesis – Pedro Miguel Sánchez Sánchez



Internet of Things 22 (2023) 100764

7

P.M. Sánchez Sánchez et al.

Fig. 1. LwHBench data collection flow diagram.

Fig. 2. Samples per hour generated from each device model.

5. Data exploration and use cases

This section explores the dataset described in the previous section. For that purpose, a set of ML/DL-based use cases for network
and device management are presented using the data available. Note that the purpose of this section is to show the usefulness of
the benchmarking application and the data collected with it, not to find the best solution to the problems proposed as illustrative
examples.

5.1. Model/individual identification

The first use case where the dataset (and LwHBench benchmark to generate new data) can be applied is in device identification
based on the performance of its device components. This can be a critical task in environments where the devices can be
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Fig. 3. Samples per device contained in the dataset.

impersonated by malicious ones with new hardware or software configurations [33]. In this sense, this use case can be seen from two
different perspectives: identification of the device model, a relatively straightforward task from the data measuring the performance of
each hardware component, as different hardware will have different performance values; and individual identification of each device, a
more complex task since to uniquely identify devices with identical software and hardware it is necessary to analyze the differences
and imperfections in the chips of each device [34].

5.1.1. SBC model identification
For this first perspective, a ML/DL-based dimensionality reduction and clustering approach [35] is followed to group together

the data from each device model. This approach is selected due to its proven efficacy for automated class inference and identification
in unlabeled data applied in many research areas, such as network-based IoT device type inference [36], intrusion detection [37]
or even biology [38].

As a proof of concept, it is decided to apply clustering to all CPU, GPU, memory and storage features, discarding timestamps
and temperature. As clustering algorithms, several options are tested, concretely PCA, t-SNE and umap, reducing the number of
dimensions to two. So, the resultant data can be easily plotted for result explainability. Regarding clustering, k-means and DBSCAN
(Density-Based Spatial Clustering of Applications with Noise) algorithms are applied over the data once the dimensions have been
reduced to two. As the number of device models is previously known, the number of clusters in the algorithm configuration is set
to four.

Fig. 4 shows the results when the combination of PCA with k-means clustering is applied as data processing approach. Different
configurations of dimensionality reduction and clustering algorithms gave similar results. It can be seen how four different groups
in the data emerge clearly separated, and how the clustering algorithm is able to associate the points successfully. To verify that
the clustering is correct, the number of instances assigned to each of them is compared with the number of samples in the dataset
belonging to each device model, as also portrayed in Fig. 2. Thus, the results are:

• Cluster 0: 784 095 samples, which coincides with the samples of RPi4.
• Cluster 1: 505 584 samples, which coincides with the samples of RPi1.
• Cluster 2: 547 800 samples, which coincides with the samples of RPi3.
• Cluster 3: 548 647 samples, which coincides with the samples of RPiZero.

From the above results, it can be concluded that LwHBench benchmark and dataset can be applied to solve the model
identification problem. This approach has performed perfectly, since the number of samples in each cluster matches one of the
RPi models deployed in the testbed. Moreover, it can be seen how Cluster 2 (green color) has its values much more concentrated
than Clusters 0 and 3 (blue and red), which indicates higher stability in the values of this type of device.

5.1.2. Individual identification
In this case, the objective is to uniquely identify each one of the 45 devices used for dataset generation. Here, an ML/DL-based

classification approach is followed due to its demonstrated performance in IoT device identification tasks [39,40].
For this task, all the features available in the dataset regarding components are used, and in this case, it is also included

the temperature as a feature, since the correlation between this and the performance of each component can be one of the
patterns that the ML/DL algorithm could detect when identifying each device individually. Besides, the storage-related features,
100 measurements for read time and 100 for write, are preprocessed, calculating the average, median, minimum and maximum
for each feature group. As the number of devices to be identified is fixed, the 45 devices used to generate the dataset, ML/DL
classification techniques [41] are used to identify each SBC. Therefore, the following techniques are compared: Decision Tree (DT),
Random Forest (RF), XGBoost, k-Nearest Neighbors (k-NN), Naive Bayes (NB), Support Vector Machine (SVM) and Multi-Layer
Perceptron (MLP). For k-NN, NB, SVM and MLP, normalization is applied using min–max : 𝑥 = 𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
. The dataset is split into
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Fig. 4. PCA-based dimensionality reduction with k-means clustering.

Table 4
Device identification results.

Algorithm Hyperparameters Precision Recall F1-Score

DT 𝑚𝑎𝑥_𝑑𝑒𝑝𝑡ℎ = 𝑁𝑜𝑛𝑒 0.88 0.88 0.88
RF 𝑛_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 = 100 0.93 0.93 0.93

XGBoost 𝑙𝑟 = 0.1, 𝑔𝑎𝑚𝑚𝑎 = 0.01
𝑚𝑎𝑥_𝑑𝑒𝑝𝑡ℎ = 20

0.97 0.97 0.97

k-NN 𝑘 = 7 0.32 0.32 0.31
NB – 0.20 0.17 0.12

SVM 𝑘𝑒𝑟𝑛𝑒𝑙 = 𝑙𝑖𝑛𝑒𝑎𝑟,
𝑔𝑎𝑚𝑚𝑎 = 0.01

0.50 0.51 0.50

MLP 1 relu hidden layer,
50 neurons

0.58 0.57 0.56

80% of the data for training and cross-validation, and 20% for testing. Table 4 shows the Precision, Recall and F1-Score [42] per
algorithm. As it can be seen, XGBoost is the algorithm providing the best results, with a 0.97 in Precision, Recall and F1-Score.

Moreover, Fig. 5 shows the confusion matrix for the 45 devices involved in the identification use case. Note that the RPi model
has been added at the beginning of each label to have the devices ordered by model in the image. The results in this use case are
satisfactory, as the minimum accuracy in all devices is 0.88, having more than 0.93 in most of them. Therefore, it can be concluded
that the collected features are suitable for individual device identification.

Furthermore, more complex approaches could be applied to perform individual device identification depending on the scenario
requirements. For example, applying time series approaches or advanced DL models such as LSTM (Long Short-Term Memory) or
Transformer networks. One example of these solutions can be found in [43], where similar features to the ones collected about CPU
performance were employed to differentiate 25 Raspberry Pi devices. In this case, a sliding window approach is used for vector
preprocessing, incorporating new statistical information as features for the ML/DL classifier.

5.2. Performance analysis

The second use case where the benchmark and dataset can be applied is in the comparison of the performance of each
device hardware component. This comparison can be seen from two different areas: intra-device comparison, where contextual
circumstances such as temperature are analyzed to evaluate their impact on the device performance; and inter-device comparison,
where components from different devices, but from the same model and in similar context conditions, are compared to find
performance variations based on manufacturing variations.

5.2.1. Intra-device performance analysis
One intra-device use case where the collected dataset can be applied is in the analysis of the impact of temperature variations on

the performance of the different device models and their components. This is another research area with a large interest in recent
years [44] due to the deployment of SBC in a wide variety of critical scenarios.

For this use case, one of the devices available in the dataset is randomly selected and the impact of temperature on the other
hardware-related metrics is analyzed. As the impact of temperature may vary according to the device model, one device per model
is selected. Besides, only the first feature regarding storage read and write performance (storage_read_1 and storage_write_1) are
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Fig. 5. Individual device identification confusion matrix.

analyzed. In order to test the impact of temperature value on the other features, the correlation between the temperature feature
and the other features is studied. The correlation has values between 1 and −1 depending on whether the features increase their
value linearly and positively, or inversely and proportionally.

Fig. 6 shows the correlation values for four different devices, one per available model. It can be appreciated how the RPi3 shows
a high sensitivity to temperature in almost all features, only the ones based on sleep function execution seems to have a stable
performance. This analysis has been repeated with the rest of the RPi3 devices to ensure that it was not a failure in one of them,
with all the devices of this model showing very similar correlation graphs. In contrast, the rest of the models show much lower
sensitivity to temperature changes, with values close to zero that only vary around ±0.05 in certain cases and devices.

Thus, from this use case it can be concluded that the RPi3 devices used for the generation of the dataset are the model with
the highest sensitivity to temperature changes, as the correlation of this feature with the rest is high in some cases. This fact is
interesting for deployments where the physical environment conditions are changing, but the performance is expected to remain
stable over time.

Another interesting use case of intra-device analysis is the analysis of how the performance of a device can drop over time due
to component wear and tear. For this use case, data needs to be collected over a long period of time. In the case of the available
dataset, a total of 100 days (from 6th December 2021 to 17th March 2022) of data have been collected, so although it is not an
extensive period, it could give clues about component and device aging.

5.2.2. Inter-device performance analysis
The last use case to be explored is the analysis of the performance variations of different hardware components within devices of

the same model. This use case is closely related to individual identification, since it is the performance variations between devices
of the same model that can be used to characterize each device separately.

To analyze this use case, the distribution densities of different features for devices of the same model are plotted. As a proof of
concept, the selected model is the RPi4 and one feature from each component is shown: cpu_sleep_120s for the CPU, gpu_matrixmul
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Fig. 6. Temperature correlation plot.

for the GPU, storage_read_1 for the memory/storage, and storage_write_1 for the storage. Although identical experiments could be
performed for the other models, these are omitted for document space reasons.

Fig. 7 shows the density plots for each feature. Some interesting patterns can be appreciated in these plots. First, it can be seen
how for the features gpu_matrixmul (Fig. 7(b)) and storage_read_1 (Fig. 7(c)) the distributions are quite stable between the devices and
all of them show similar shapes. However, cpu_sleep_120s (Fig. 7(a)) exhibits how each device has a Gaussian distribution centered
in a different value, demonstrating that some performance variations are present within the device model. A similar situation is
found with storage_write_1 (Fig. 7(d)) feature, but in this case, the distribution plots tend to have two distinctive center values, and
each device sticks to one of them (except for the dark green one with MAC dc:a6:32:14:a8:d8 that has a higher value, although the
distribution shape is similar to the rest).

From this use case, it can be concluded that performance variations are present within each device model depending on the
exact device. So, it has been shown that although hardware specifications may be identical, chips contain variations that can be
leveraged to perform fingerprinting or identification tasks.

6. Real-world deployment in an agriculture scenario

This section shows the benchmark adaptation and deployment into a real-world IoT environment based on SBC devices. Here,
the aim is to show the use case applicability of the proposed solution as well as its adaptability process to other SBC models.

In this sense, an IoT sensor network for agriculture has been considered, being the sensors controlled by three PINE64 RockPro64
devices. As these devices have relatively powerful processing power, they perform the critical task of collecting the sensor data and
processing it to infer information about the environment status. Then, they can activate different controllers in order to perform
certain tasks, such as watering the plants or rise humidity/temperature, among others.

As the RockPro64 devices maintain control of the farming environment, they are a clear target for a potential attacker looking
to extract critical process information or interfere with industrial production. One possible attack could be to replace one of the
legitimate devices with an identical one but with modified software to interfere with the normal activity of the environment,
for example by rising the temperature and killing the production plants. Therefore, the administrator wants to keep control of
the environment, monitoring the performance of the devices during the run time while keeping them identified based on their
manufacturing variations. In this sense, this approach can be seen as a real-world application of the individual device identification
use case described in Section 5.1.

Each RockPro64 device includes a 6-core CPU: 4 × ARM Cortex A53 cores @ 1.4 GHz + 2 × ARM Cortex A72 cores @ 1.8 GHz;
as GPU it features ARM Mali T860; and 2 GB LPDDR4 RAM. As operating system, they use 64 bit armbian (Debian-based Linux for
ARM). As the GPU is different from the ones included in RPi devices, the code needed to be adapted to gather the counters from the
ARM Mali T860 GPU. Concretely, the GPU_ACTIVE counter was selected from the ones available [45]. For cycle counter collection,
ARM HWCPipe library [46] has been employed. For the CPU-based time gathering, perf time is gathered in the same way that for
RPi devices, using the perf_counter_ns() function. The functions executed are the same as the ones depicted in Table 3, adapted in
the case of the GPU to the new hardware using the ARM Compute Library [47]. The code is also available in [11].

For experimentation purposes, the code was deployed on the three identical devices for one week. ≈35.9 MB of data were
collected, with a total of ≈12 800 vector samples (around 4000 per device). After the data were gathered, the approaches shown in
Section 5.1 were implemented to monitor the performance differences between devices and perform individual identification. Fig. 8
shows the distribution plot for the CPU_sleep_120s feature. As it can be seen, the three device distributions are clearly differentiated
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Fig. 7. Raspberry Pi 4 feature density plots.

Fig. 8. RockPro64 SBC CPU_sleep_120s density plot.

between each other. This performance variation allows the individual recognition of the devices, as their performance distribution
does not overlap. Therefore, the classification results, using the same ML classification algorithms as the ones depicted in Table 4,
are perfect, giving 100% F1-Score and accuracy.

With this configuration, the benchmarking application is capable of verifying that the devices deployed in the environment are
the legitimate ones. This real-world deployment demonstrates how the benchmarking application can be adapted and deployed in
new SBC models with a relatively low effort, enabling the performance analysis of the devices where the application is deployed.
This performance analysis enables different use cases, such as individual identification, to be applied in the scenario. However, some
challenges were noticed during this real-world deployment. One of the main ones is the necessity of drivers to be able to interact
with the CPU/GPU components in order to extract the cycle counters. This is a drawback due to the large amount of hardware

LwHBench: A low-level hardware component benchmark and dataset for
Single Board Computers

64 PhD Thesis – Pedro Miguel Sánchez Sánchez



Internet of Things 22 (2023) 100764

13

P.M. Sánchez Sánchez et al.

component versions available and the lack of proper documentation in some cases. The positive and negative outcomes of the
complete benchmark implementation and data collection are described in the following section, Section 7.

7. Discussion

This section seeks to analyze the main advantages and weaknesses of the proposed benchmarking application and the associated
dataset, highlighting the main lessons learned during the work development. From the advantages point of view, it is worth noting
the next aspects:

• An important literature gap has been covered. As Section 2 shows, there is no low-level benchmarking application for
SBC devices, enabling precise hardware analysis, nor any dataset regarding low-level SBC performance. The present work has
partially covered these issues with the implementation of the benchmarking application and the release of a large dataset
collected for 100 days.

• Demonstrated utility for ML/DL-based use cases. The collected dataset has been validated in a set of realistic use cases
related to AI-based service management, mainly regarding device identification. Thus, it has been shown the utility of the
benchmark when it comes to maintain under control an IoT environment where device fingerprinting is critical.

• The benchmark is easy to deploy and extend in other RPi-based environments. The LwHBench benchmark code is
completely open-source [11], so other researchers and system administrators can execute it in their own scenarios just by
installing the required dependencies. This fact also allows for the extension of the benchmark with new metrics according to
the requirements of other scenarios or the available hardware.

Besides, from the drawback perspective, the next points have importance, mainly in future related research:

• Hardware-based implementation. LwHBench leverages CPU and GPU cycle counters, which accessed to monitor the
performance of other components. Therefore, the implementation for new SBC models may require deep hardware study
and understanding. For example, to access to the GPU cycle counter in a new GPU model, it would be needed to read the
documentation and try the specific hardware drivers. Besides, due to the large variety in the hardware component versions,
some specific components might not have open source drivers or libraries to interact with the performance counters.

• The collected metrics are not directly applicable for traditional benchmarking. CPU performance is measured in terms of
GPU cycles, an unusual metric that is not very representative of the actual hardware performance when executing high-level
tasks. Moreover, the differences between devices from the same model can come both from the measured or the measuring
device, so it is difficult to measure where the chip imperfections are actually located.

• Component isolation might reduce device performance. The dataset has been collected while executing LwHBench in an
isolated core, when possible (RPi3 and RPi4), and reducing the kernel interruptions from other processes to the maximum.
Although the other cores can be used without performance limitations, isolating one core can downgrade the performance of
critical tasks running in the SBC at the same time. Therefore, further experimentation with weaker isolation measurements
can be interesting to know the impact of other processes on the collected values.

This work proposes the only low-level benchmark available in recent literature, and its usefulness has been validated through
a series of ML/DL-enabled use cases, which are exciting topics for future IoT-based network and service management solutions.
However, as this section details, the proposed solution has room for improvement regarding adaptation to other SBC models.

8. Conclusions and future work

This work has presented a low-level hardware component benchmarking application for SBC, namely LwHBench. It measures the
performance of the CPU, GPU, Memory and Storage of the devices using other self-contained components. This approach ensures that
the metrics collected are reliable and non-dependent on the imperfections of the component being measured. The benchmark has
been implemented for Raspberry Pi devices, for all the models currently available in the market, from RPiZero to RPi4. In order to
ensure optimal measurement stability, every possible action that can help to reduce the noise introduced by other programs running
on the device has also been considered, such as isolating the core where the benchmark is running or blocking kernel interrupts.

In addition to the application implementation, an exhaustive dataset has been collected from running LwHBench benchmark
on a set of 45 devices over 100 days, which contains more than 2 million vectors and 4 GB of data. Subsequently, to explore the
available data and show possible areas of use, a series of use cases have been described and partially solved, reflecting the real needs
of an environment whose management integrates modern AI-based solutions. These use cases have been divided into two groups:
one on device identification, where it has been shown that using LwHBench it is possible to identify both the model and each device
individually; and another on performance analysis, where the possible impact of temperature on hardware performance as well as
the variations between devices of the same model have been studied.

As conclusions wrap up, the previous contributions intend to advance state of the art regarding system and device management,
as it enables new solutions that, based on low-level hardware benchmarking and ML/DL techniques, improve the control over the
devices deployed in modern networking environments, such as 5G-based industries.

As future work, it is planned to adapt the benchmarking application to other SBC models in order to collect data from them
and perform more in-depth experiments regarding single-device identification and performance impact of temperature and device
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aging. Moreover, the benchmarking application will continue being executed in the current devices, generating more data in order
to analyze new use cases such as device and component aging. Finally, as further research line, it is planned to integrate the
benchmarking application with federated learning techniques, so the data is processed directly in the device according to the use
case, without requiring to take the data outside the SBC device.
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Abstract
The battlefield has evolved into a mobile and 

dynamic scenario where soldiers and heteroge-
neous military equipment exchange information 
in real-time and wirelessly. This fact brings to 
reality the Internet of Battlefield Things (IoBT). 
Wireless communications are key enablers for the 
IoBT, and their management is critical due to the 
spectrum scarcity and the increasing number of 
IoBT devices. In this sense, IoBT spectrum sensors 
are deployed on the battlefield to monitor the 
frequency spectrum, transmit over unoccupied 
bands, intercept enemy transmissions, or decode 
valuable information. However, IoBT spectrum 
sensors are vulnerable to heterogeneous cyber-at-
tacks, and their accurate detection is an open 
challenge in the literature. Thus, this paper pres-
ents SpecForce, a security framework for IoBT 
spectrum sensors based on device behavioral fin-
gerprinting and ML/DL techniques. SpecForce 
considers heterogeneous data sources to detect 
the most dangerous and recent cyber-attacks 
affecting IoBT spectrum sensors, such as imper-
sonation, malware, and spectrum sensing data 
falsification attacks. To evaluate the SpecForce 
detection performance, it has been deployed on 
25 real spectrum sensors, and results show almost 
perfect detection for the three cyber-attack fami-
lies previously mentioned.

Introduction
Today’s battlefield and military operations are 
highly dependent on wireless communication 
technologies. Aircraft, warships, vehicles, weap-
ons, and soldiers are equipped with connectiv-
ity capabilities to send and receive confidential 
information enabling successful offensive and 
defensive tactics. These deployments make up 
the so-called Internet of Battlefield Things (IoBT) 
[1], which combines the Internet of Things (IoT) 
characteristics with the requirements of military 
scenarios where properties such as security, priva-
cy, and availability are even more critical than in 
civil scenarios. The dynamism of the IoBT, where 
troops, vehicles, and military equipment are con-
stantly moving, requires wireless communications 
[2]. Here, Cognitive Radio Networks (CRN) [3] 
play a key role, endowing communications with 

programmability and high mobility in terms of 
used frequencies. Therefore, CRN should man-
age the radio frequency (RF) spectrum securely 
and adequately to select unoccupied frequency 
bands, establish secure transmissions, intercept 
enemy messages, and decode valuable infor-
mation. In the IoBT, one of the most common 
approaches to enforce the previous tasks is to 
deploy resource-constrained spectrum sensors 
able to monitor and decode transmissions in dif-
ferent radio bands [4]. These sensors have numer-
ous advantages, such as portability, accuracy, 
simplicity, and reduced cost, but they are vulner-
able to cyber-attacks.

In the modern battlefield, cyberwar and 
cyber-attacks are common hostile acts aiming to 
penetrate strategic targets such as enemy com-
munications, area defense, or critical infrastruc-
tures [5]. In this context, IoBT spectrum sensors 
are perfect targets due to their computational and 
storage constraints to maintain updated software 
and deploy cybersecurity mechanisms. Looking at 
cyber-attacks affecting IoT spectrum sensors, they 
can be categorized into three main families:
•	 Identity-focused attacks, whose goal is to 

impersonate legitimate IoBT spectrum sen-
sors by deploying malicious ones with the 
same hardware and software configuration 
to extract sensitive military information and 
perform malicious activities;

•	 Vulnerability-based attacks, where typical 
threats such as malware are encompassed 
to disrupt military services, steal battlefield 
information, or initiate attacks to other mili-
tary targets; 

•	 Spectrum Sensing Data Falsification (SSDF) 
attacks, aiming to modify spectrum data 
reported by sensors to hide illegal transmis-
sions, provoke interference and collisions, 
or create fictitious transmissions persuading 
enemies communication.
In the IoBT, the detection of the previous 

cyber-attack families has been tackled separately 
by the literature. Most works analyze software 
operations to detect malware and exploit vulner-
abilities in generic IoT devices deployed in mili-
tary scenarios [6]. However, only a few deal with 
SSDF attacks detection in IoBT cognitive radio 
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networks [7], and identification of IoBT devices 
[8]. Besides, outside the battlefield scenario, the 
previous three cyber-attack families have been 
covered in a wider manner [9] since they also 
affect other critical scenarios such as Industrial IoT 
or network management. In summary, and as can 
be seen in Table 1, the main limitation in the IoBT 
is that solutions detecting malware are not able to 
detect SSDF and spoofing attacks, and solutions 
detecting SSDF are useless for malware detec-
tion and identical device identification. Therefore, 
the main focus of this work is to explore novel 
approaches to detect all the previous attack fam-
ilies when they occur in IoBT spectrum sensors. 
One of the most promising and recent approach-
es to improve this situation is to combine device 
behavioral fingerprinting with Machine and Deep 
Learning (ML/DL) techniques [10]. In this context, 
different data sources, such as system calls, logs, 
hardware events, or clock skew, can be leveraged 
to characterize the normal behavior of spectrum 
sensors and detect anomalies or classify the three 
main cyber-attack families detailed before. 

However, despite the achievements of existing 
work dealing with cybersecurity in the IoBT, and 
more specifically in IoBT spectrum sensors, there 
are still several open challenges that require fur-
ther research efforts. Among the main ones, the 
following ones are highlighted:
•	 There is no definition of the threat model 

that IoBT spectrum sensors face, as previ-
ous solutions have analyzed their threats in a 
separated manner;

•	 Data sources and events accurately detect-
ing normal and heterogeneous under-attack 
behaviors of IoBT spectrum sensors have not 
been investigated;

•	 Table 1 shows, there is no global solution 
detecting both system- and data-oriented 
cyber-attacks while evaluating the resource 
consumption in IoBT spectrum sensors.
In order to improve the previous challenges, 

the main contributions of this work include:
•	 The creation of a scenario where 25 real 

IoBT spectrum sensors are employed for 
radio transmission monitoring and decoding. 
In such a scenario, the threat model faced 
by these sensors is defined, and 18 hetero-
geneous cyber-attacks related to the thread 
model are considered to infect the IoBT 
spectrum sensors.

•	 The design and implementation of Spec-
Force, a security framework for IoBT 
spectrum sensors that combines device 
behavioral fingerprinting and ML/DL tech-
niques. The implementation of SpecForce 
includes the analysis of the most suitable 
behavioral data sources and the ML/DL 
techniques for the defined threat model.

•	 The validation of SpecForce while detecting 
the cyber-attacks considered in the proposed 
scenario for

	 –Identity-based attacks, achieving an average 
91.92 percent True Positive Rate (TPR)

	 –Heterogeneous malware detection, achiev-
ing 90 percent TPR and 96 percent True 
Negative Rate (TNR)

	 –SSDF attack detection, achieving 96–99 
percent TNR and 92–100 percent TPR, 
depending on the attack.

Cybersecurity Threats of IoBT Spectrum Sensors

This work presents a scenario composed of 
25 IoBT spectrum sensors based on Raspberry 
Pi (RPi) devices belonging to the ElectroSense 
platform [11] and deployed in different locations 
between Switzerland and Spain. The sensors are 
randomly deployed in the field since their loca-
tion does not affect the framework performance 
(spectrum data is not leveraged for cyber-attack 
detection). Ten of these sensors are Raspberry 
Pi 3 Model B+ and 15 are Raspberry Pi 4 Model 
B. Each sensor is equipped with an RTL-SDR 
(RealTek Low cost — Software Defined Radio) 
USB kit and proper software to scan the RF spec-
trum (from 20 MHz to 1.6 GHz). Such function-
ality allows these sensors to monitor and decode 
heterogeneous wireless communications occur-
ring between military equipment such as base sta-
tions, convoys, aircraft, helicopters, or satellites.

Despite the benefits of IoBT devices, they pres-
ent some cybersecurity issues and vulnerabilities 
that have been already identified in [12]. In addi-
tion, some other cybersecurity issues related to 
spectrum sensing and hardware/software aspects 
of IoBT spectrum sensors need to be analyzed 
more in detail. In this sense, Table 2 summariz-
es the main threats identified after analyzing the 
vulnerabilities of the sensors considered in the 
proposed scenario. This table also provides a 
description and attack classification per threat. 

Once the threats affecting IoBT spectrum 
sensors are identified, several representative and 
recent attack vectors per family are selected to 
infect the sensors. Details regarding each attack 
vector behavior are provided below.
•	 Identity-focused. This type of cyber-attack 

impersonates legit IoT spectrum sensors to 
steal data or execute malicious actions. For 
that, it utilizes identical hardware and soft-
ware configurations to legit IoBT spectrum 
sensors [13]. 

•	 Malware. This type of malicious software 
causes harm to IoBT spectrum sensors by 
performing diverse malicious actions. From 
each malware type, different vector samples 
are executed in each sensor.

	 –Rootkit. Allow a malicious entity to gain 
remote control over IoBT spectrum sensors 
while providing self-hiding capabilities. The 
samples selected for testing are Beurk, Dia-
morphine, and Bdvl.

	 –Botnet. Generate a network of infected 
IoBT spectrum sensors to perform malicious 
activities, such as denial of service, in a coor-
dinated manner. The samples selected are 
Bashlite and Mirai. 

	 –Backdoor. Provide malicious actors with 

TABLE 1. Related work comparison.

Work Scenario Device type Attack Approach

[7] IoBT Spectrum 
Sensors

SSDF Blockchain

[8] IoBT Generic Generic security and trust  Blockchain

[9] Generic Computers  Identity Hardware finger-
printing

This work IoBT Spectrum 
Sensors

 Identity, Malware, SSDF Behavior analysis + 
ML/DL
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unintended IoBT spectrum sensor access 
and control. The samples selected for the 
present work are HttpBackdoor, Python 
Backdoor, and TheTick. 

	 –Ransomware. Encrypt sensitive files and asks 
for economical ransoms for data recovery. 
Ransomware_PoC is the sample selected for 
this malware family.

•	 SSDF. This type of cyber-attack tampers the 
data scanned by IoBT spectrum sensors to 
disrupt the spectrum optimization, monitor-
ing, and decoding services. The following 
SSDF attacks are executed after manipulat-
ing the ElectroSense source code [11]. The 
implementation details of each attack can be 
found in [14].

	 –Noise. Add random noise to the spectrum 
data.

	 –Spoof. Copy the spectrum data of one RF band 
into another band and add random noise.

	 –Repeat. Replicate the same spectrum data 
in all affected RF bands.

	 –Confusion. Swap the spectrum data 
between affected RF bands.

	 –Mimic. Copy the spectrum data of one RF 
band into another one.

	 –Delay. Sense different outdated spectrum 
data of affected RF bands.

	 –Freeze. Sense the same outdated spectrum 
data in affected RF bands.

	 –Hop. Add noise to random parts of affected 
segments. 
Analyzing the different threats and cyber-at-

tacks affecting the IoBT spectrum sensors pro-
posed in the scenario, there is a clear need for 
solutions proving cybersecurity in a unified and 
homogeneous fashion.

SpecForce Framework
The SpecForce framework covers the previous 
limitations by combining device behavioral fin-
gerprinting with ML/DL to detect heterogeneous 
cyber-attacks affecting IoBT spectrum sensors. In 

particular, the main objectives of SpecForce are to
•	 Identify malicious spectrum sensors,
•	 Detect heterogeneous malware
•	 Detect SSDF attacks manipulating spectrum 

data
To achieve these goals, SpecForce can be 
deployed in a hybrid way, where IoBT sensors 
host the behavior monitoring functionality and 
the server focuses on ML/DL-based detection. 
Additionally, all framework components can be 
deployed on the IoBT sensors.

Figure 1 shows the four main modules mak-
ing up SpecForce. From an up-down prism, the 
Data Gathering module hosts three components 
able to periodically monitor the sensor behavior 
from different perspectives. These perspectives 
have been selected with the goal of covering the 
internal behavior of the IoBT in a broad fashion 
in terms of device components, events granular-
ity level, and complexity. In particular, the Ker-
nel Software Events component monitors activity 
from resources such as CPU, memory, network 
interfaces, or file system, among others. The Sys-
tem Calls component gathers the system calls per-
formed by the processes of the sensor scanning 
the spectrum. Finally, the Hardware Cycle Count-
ers component focuses on hardware manufactur-
ing variations by monitoring the cycle counters of 
different hardware components. Figure 2 shows 
the data sources collected by each component to 
detect the cyber-attacks indicated earlier.

The Data Gathering module periodically sends 
the collected raw data to the Data Processing 
module, which is in charge of extracting valu-
able information and creating feature vectors 
with them. This module contains three different 
components with suitable feature extraction tech-
niques for each data source type. As an example 
of their functionality,
•	  Highly correlated features are filtered for 

kernel software events,
•	 Different sequence and frequency (n-gram) 

features are calculated from raw system calls,

TABLE 2. IoBT spectrum sensor threat model.

Threat Description Identity Malware SSDF

Data Disclo-
sure Publish or access sensitive information sensed or maintained by IoBT spectrum sensors. û ü ü

Spoofing Replace legitimate spectrum sensors with malicious devices using the same identity. Usually, it is the 
starting point for further cyber-attacks like data injection. ü û û

Sybil Send a lot of fake data with many different IoBT sensors identities to alter the decisions generated by 
the IoBT platform. ü û û

Jamming Generate fake or repeated wireless signals to interrupt ongoing communications between legitimate 
sensors and the IoBT platform or disturb the collected data. û û ü

Denial of Ser-
vice (DoS)

Exhaust or degrade resources of the IoBT platform or spectrum sensors. It can affect at network level 
or directly at application level. Many devices can be coordinated to increase the impact of the attack, 
resulting in a Distributed DoS (DDoS).

ü û ü

 Advanced 
Persistent 

Threat (APT)

Launch sophisticated, continuous, and targeted attacks over the IoBT platform or its spectrum sensors 
for a large time period. ü ü û

Data Poison-
ing

Modify spectrum data monitored by IoBT sensors. It leads to wrong decisions while optimizing spec-
trum occupancy or decoding transmissions. Two variants are differentiated: Availability Attack and 
Targeted Attack.

û û ü

Smart Attacks Use of machine learning techniques and security analysis devices to gather insights about the IoBT 
platform defense countermeasures and attack it. ü ü û
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•	 Window-based statistical features are extract-
ed from hardware cycle counters.

After that, the Dataset Generation module compiles 
all feature vectors generated by the previous mod-
ule, generating datasets with the sensor behavioral 
data. Finally, the AI-based Cybersecurity module 
trains and evaluates supervised and unsupervised 
ML-based models identifying devices and cyber-at-
tacks. For that, Offline and Online processes are 
considered. First, the Offline process selects suit-
able ML/DL algorithms and trains them with the 
created datasets. It generates the ML/DL models 
used by the framework. Secondly, the Online one 
evaluates the current device behavior the trained 
ML/DL models to detect cyber-attacks.

SpecForce Implementation and Results
To analyze the performance of SpecForce, it has 
been deployed on the 25 IoBT spectrum sensors 
of the scenario described earlier. Then, the follow-
ing three use cases have been analyzed: one per 
cyberattack type:
•	 Device identification to avoid spoofing 

attacks
•	 Detection of heterogeneous malware
•	 Detection of SSDF attacks

Identity-Focused Attack
This use case focuses on chip imperfections affect-
ing the hardware performance of IoBT spectrum 
sensors, which allow the generation of unique 
fingerprints per sensor to detect device spoof-
ing attacks. Ideally, different physical oscillators 
should be used to analyze these imperfections, but 
Raspberries Pi acting as sensors only contain one 
oscillator used by all hardware as base frequency. 
Therefore, this work leverages the imperfections 
in circuits employed to multiply the base oscillator 
frequency for the device CPU and GPU separately.

After analyzing the hardware components, 
the Hardware Cycle Counter component of Spec-
Force monitors the data sources indicated in Fig. 
2 for device identification. Then, it measures the 
skew between the CPU and the GPU cycle count-
ers. To obtain stable fingerprints, different func-
tions are executed on the CPU while the GPU 
cycle counter is monitored. Concretely, the func-
tions selected are:
•	 Sleep during 120 seconds
•	 Hash calculation of a string
•	 Random number generation
Then, 400 output values of the previous func-
tions are generated as raw data. To have stability 
in these values, process isolation measures are 
taken in the sensor to avoid kernel interruptions 
from other processes while the functions are run-
ning. Table 3 contains the details about the data 
gathering, data processing and evaluation steps 
of this use case. In total, a dataset with 10 finger-
prints per device is generated (8 for training and 
2 for testing). To identify the different IoBT spec-
trum sensors, the AI-Based Cybersecurity module 
employs ML/DL classification algorithms since 
the number of sensors in the scenario is constant. 
Once trained and evaluated, the average TPR of 
each model is 71.40 percent for k-NN, 89.65 per-
cent for SVM, 91.92 percent for XGBoost, 86.47 
percent for DT, 91.64 percent for RF, and 85.32 
percent for MLP. As can be appreciated, RF and 
XGBoost are the best performing models, with 

+91 percent TPR. To identify those IoBT spec-
trum sensors having more and less similarity, Fig. 
3 shows the XGBoost confusion matrix for the 
fingerprints used during testing. The results show 
how using a 50 percent TPR threshold, all IoBT 
spectrum sensors can be perfectly identified. 
Besides, XGBoost shows that the most import-
ant features to perform the identification are the 
median and average values of the 120 second 
sleep function.

This use case has demonstrated that SpecForce 
is able to uniquely identify 25 IoBT spectrum sen-
sors by leveraging hardware manufacturing imper-
fections and ML classification techniques. In other 
words, SpecForce solves the issue of identity-fo-
cused attacks, as new or duplicated devices would 
be recognized before they can cause further harm.

FIGURE 2. Collected data sources for device behavior fingerprinting.
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Fig. 2: Collected Data Sources for Device Behavior Fingerprinting.

the cycle counters of different hardware components. Fig. 2
shows the data sources collected by each component to detect
the cyber-attacks indicated in Section II.

The Data Gathering module periodically sends the collected
raw data to the Data Processing module, which is in charge
of extracting valuable information and creating feature vectors
with them. This module contains three different components
with suitable feature extraction techniques for each data source
type. As an example of their functionality, (i) highly correlated
features are filtered for kernel software events, (ii) different
sequence and frequency (n-gram) features are calculated from
raw system calls, (iii) and window-based statistical features are
extracted from hardware cycle counters. After that, the Dataset
Generation module compiles all feature vectors generated
by the previous module, generating datasets with the sensor
behavioral data. Finally, the AI-based Cybersecurity module
trains and evaluates supervised and unsupervised ML-based
models identifying devices and cyber-attacks. For that, Offline
and Online processes are considered. First, the Offline process
selects suitable ML/DL algorithms and trains them with the
created datasets. It generates the ML/DL models used by the
framework. Secondly, the Online one evaluates the current
device behavior using the trained ML/DL models to detect
cyber-attacks.

IV. SPECFORCE IMPLEMENTATION AND RESULTS

To analyze the performance of SpecForce, it has been
deployed on the 25 IoBT spectrum sensors of the scenario
described in Section II. Then, the following three use cases have
been analyzed: (i) device identification to avoid spoofing attacks,
(ii) detection of heterogeneous malware, and (iii) detection of
SSDF attacks.

A. Identity-focused Attack

This use case focuses on chip imperfections affecting the
hardware performance of IoBT spectrum sensors, which allow
the generation of unique fingerprints per sensor to detect device
spoofing attacks. Ideally, different physical oscillators should be
used to analyze these imperfections, but Raspberries Pi acting as
sensors only contain one oscillator used by all hardware as base
frequency. Therefore, this work leverages the imperfections in
circuits employed to multiply the base oscillator frequency for
the device CPU and GPU separately.

After analyzing the hardware components, the Hardware
Cycle Counter component of SpecForce monitors the data
sources indicated in Fig. 2 for device identification. Then,

it measures the skew between the CPU and the GPU cycle
counters. To obtain stable fingerprints, different functions
are executed on the CPU while the GPU cycle counter is
monitored. Concretely, the functions selected are: (i) sleep
during 120 seconds, (ii) hash calculation of a string, and (iii)
random number generation. To have stability in these values,
process isolation measures are taken in the sensor to avoid
kernel interruptions from other processes while the functions
are running. TABLE III contains the details about the data
gathering, data processing and evaluation steps of this use case.
In total, a dataset with 10 fingerprints per device is generated
(8 for training and 2 for testing). To identify the different IoBT
spectrum sensors, the AI-Based Cybersecurity module employs
ML/DL classification algorithms since the number of sensors
in the scenario is constant. Once trained and evaluated, the
average TPR of each model is 71.40% for k-NN, 89.65% for
SVM, 91.92% for XGBoost, 86.47% for DT, 91.64% for RF,
and 85.32% for MLP. As can be appreciated, RF and XGBoost
are the best performing models, with +91% TPR. To identify
those IoBT spectrum sensors having more and less similarity,
Fig. 3 shows the XGBoost confusion matrix for the fingerprints
used during testing. The results show how using a 50% TPR
threshold, all IoBT spectrum sensors can be perfectly identified.
Besides, XGBoost shows that the most important features to
perform the identification are the median and average values
of the 120 second sleep function.

This use case has demonstrated that SpecForce is able to
uniquely identify 25 IoBT spectrum sensors by leveraging
hardware manufacturing imperfections and ML classification
techniques. In other words, SpecForce solves the issue of
identity-focused attacks, as new or duplicated devices would
be recognized before they can cause further harm.

B. Malware Detection

This second use case deals with the detection of hetero-
geneous malware. As starting point, a literature review is
performed to study the data sources available in Raspberry Pis
and the behavior of well-known malware. Due to the activity
of running malware, the internal behavior of a device changes.
This behavior can be reflected from several perspectives, such
as syscalls, running processes or kernel events. In this sense,
some known malware samples include evasion techniques that
hide the malicious processes and syscalls. However, lower-level
sources such as kernel events are harder to modify [10].

As output of such review, the SpecForce Data Gathering
module is implemented to monitor in a periodic manner

FIGURE 1.SpecForce Architectural Design and IoBT Scenario.
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TABLE II: IoBT Spectrum Sensor Threat Model

Attack
Threat Description Identity Malware SSDF

Data
Disclosure

Publish or access sensitive information sensed or maintained by IoBT spectrum
sensors. ✗ ✓ ✓

Spoofing Replace legitimate spectrum sensors with malicious devices using the same identity.
Usually, it is the starting point for further cyber-attacks like data injection. ✓ ✗ ✗

Sybil Send a lot of fake data with many different IoBT sensors identities to alter the
decisions generated by the IoBT platform. ✓ ✗ ✗

Jamming Generate fake or repeated wireless signals to interrupt ongoing communications
between legitimate sensors and the IoBT platform or disturb the collected data. ✗ ✗ ✓

Denial of
Service (DoS)

Exhaust or degrade resources of the IoBT platform or spectrum sensors. It can affect
at network level or directly at application level. Many devices can be coordinated to
increase the impact of the attack, resulting in a Distributed DoS (DDoS).

✓ ✗ ✓

Advanced Persistent
Threat (APT)

Launch sophisticated, continuous, and targeted attacks over the IoBT platform or its
spectrum sensors for a large time period. ✓ ✓ ✗

Data
Poisoning

Modify spectrum data monitored by IoBT sensors. It leads to wrong decisions
while optimizing spectrum occupancy or decoding transmissions. Two variants are
differentiated: Availability Attack and Targeted Attack.

✗ ✗ ✓

Smart Attacks Use of machine learning techniques and security analysis devices to gather insights
about the IoBT platform defense countermeasures and attack it. ✓ ✓ ✗

– Spoof. Copy the spectrum data of one RF band into
another band and add random noise.

– Repeat. Replicate the same spectrum data in all
affected RF bands.

– Confusion. Swap the spectrum data between affected
RF bands.

– Mimic. Copy the spectrum data of one RF band into
another one.

– Delay. Sense different outdated spectrum data of
affected RF bands.

– Freeze. Sense the same outdated spectrum data in
affected RF bands.

– Hop. Add noise to random parts of affected segments.
Analyzing the different threats and cyber-attacks affecting

the IoBT spectrum sensors proposed in the scenario, there is a
clear need for solutions proving cybersecurity in a unified and
homogeneous fashion.

III. SPECFORCE FRAMEWORK

The SpecForce framework covers the previous limitations
by combining device behavioral fingerprinting with ML/DL to
detect heterogeneous cyber-attacks affecting IoBT spectrum sen-
sors. In particular, the main objectives of SpecForce are to (a)
identify malicious spectrum sensors, (b) detect heterogeneous
malware, and (c) detect SSDF attacks manipulating spectrum
data. To achieve these goals, SpecForce can be deployed in a
hybrid way, where IoBT sensors host the behavior monitoring
functionality and the server focuses on ML/DL-based detection.
Additionally, all framework components can be deployed on
the IoBT sensors.

Fig. 1 shows the four main modules making up SpecForce.
From an up-down prism, the Data Gathering module hosts three
components able to periodically monitor the sensor behavior
from different perspectives. These perspectives have been
selected with the goal of covering the internal behavior of the
IoBT in a broad fashion in terms of device components, events
granularity level, and complexity. In particular, the Kernel
Software Events component monitors activity from resources

Fig. 1: SpecForce Architectural Design and IoBT Scenario

such as CPU, memory, network interfaces, or file system,
among others. The System Calls component gathers the system
calls performed by the processes of the sensor scanning the
spectrum. Finally, the Hardware Cycle Counters component
focuses on hardware manufacturing variations by monitoring
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mAlwAre detectIon

This second use case deals with the detection 
of heterogeneous malware. As starting point, a 
literature review is performed to study the data 
sources available in Raspberry Pis and the behav-
ior of well-known malware. Due to the activity 
of running malware, the internal behavior of a 
device changes. This behavior can be reflected 
from several perspectives, such as syscalls, run-
ning processes or kernel events. In this sense, 
some known malware samples include evasion 
techniques that hide the malicious processes and 
syscalls. However, lower-level sources such as ker-
nel events are harder to modify [10].

As output of such review, the SpecForce Data 
Gathering module is implemented to monitor in a 
periodic manner about 80 kernel events belong-
ing to the usage of resources, hardware, and 
software activities produced in the IoBT sensors. 
Figure 2 shows the event families selected for 
malware detection. After that, one dataset with 
“normal” behavior of each IoBT spectrum sen-
sor is collected for six hours. Then, the rootkits 
(Beurk, Diamorphine, and Bdvl), botnets (Mirai 
and Bashlite), backdoors (HttpBackdoor, Python 
Backdoor, and TheTick), and ransomware (Ran-
somware_PoC) mentioned earlier are executed 
in each IoBT spectrum sensor. Later, all malware 

samples are monitored for six hours while run-
ning in a passive way (without harmful actions 
being made) and some of them (backdoors and 
ransomware) performing command execution or 
data leakage. Anomaly detection is performed 
because usually attack behaviors are unknown. 
Therefore, deviations in the normal device behav-
ior can allow

Figure 4 shows the detection performance of 
OC-SVM, the best model. Normal sensor behavior 
should be evaluated as “Normal” (in the X axis), 
and the rest of the attack behaviors should be 
evaluated as “Abnormal.” Therefore, the higher 
the values in that case, the better the framework 
works. More than 95 percent of samples belong-
ing to the diff erent normal behaviors are correctly 
detected as “Normal.” Looking at the rootkits, the 
passive and innocuous behavior of Diamorphine 
is not detected, but when it establishes an SSH 
connection every fi ve seconds (Diamorphine5S), 
it is identifi ed as malicious. In the case of passive 
behavior of Bdvl, it is detected only half of the 
time. In terms of Backdoors, the samples belong-
ing to Data Leak behavior executed by TheTick 
are detected correctly. Similarly, it is important to 
highlight that the rest of the malicious behaviors 
are detected in an almost perfect fashion. This use 
case has demonstrated the capabilities of Spec-
Force to detect malicious activities performed by 
diff erent malware aff ecting resource-constrained 
IoBT spectrum sensors. Using software kernel 
events and anomaly detection techniques, it is 
possible to characterize the behavior of the IoBT 
spectrum sensors and detect heterogeneous mal-
ware when they are in active and harmful mode. 

ssdf AttAcks detectIon
The last use case focuses on detecting attacks 
aff ecting spectrum data. As in the previous ones, 
a literature review is conducted to identify and 
select behavioral data sources and events of IoBT 
spectrum sensors characterizing the activity of the 
spectrum scanning processes affected by SSDF 
attacks [15]. As these attacks are based on the 
modification of a legitimate process, the system 
calls generated by the software are features able 
to refl ect the variations in normal activities.

FIGURE 3. Confusion Matrices (in percentages) for Device Identification using XGBoost

SUBMITTED TO IEEE COMMAG 2022 5

TABLE III: Technical Details of the Use Cases Implementation.

Data Gathering Data Processing Dataset
Generation

AI-Based Cybersecurity

Use Case Source Freq. Resources Technique Feature Vector Dataset Approach:
Algorithms Results

Identity-
focused
Attack

CPU/GPU
Cycle
Counters

≈120 s 1 CPU
Core

Sliding
window
(100
values)

18 features: Average time,
standard deviation,
minimum, maximum, or
mode of selected functions

10 fingerprints
per device, 300
vectors per
fingerprint

Classification:
k-NN, SVM,
XGBoost, DT, RF,
MLP

91.92% avg.
F1-Score

Malware
Detection

Kernel
Events 5 s

1-4%
CPU,
6.14MB
RAM

Nothing
≈ 80 features: CPU, RAM,
file system, drivers, and
network events

6 hours per
behavior, ≈2160
vectors per
behavior

Anomaly Detection:
Autoencoder, IF,
COPOD, LOF,
OC-SVM

+97% TNR,
+97% TPR

SSDF
Attack
Detection

System
Calls 60 s

20.2-30%
CPU,
6.5MB
RAM

Bag-of-
Words
1-gram

17 features: number of
repetitions per minute of
each syscall

6 hours per
behavior, 360
samples per
behavior

Anomaly Detection:
Autoencoder, IF,
COPOD, LOF,
OC-SVM

+99% TNR,
+92% TPR

k-NN: k-Nearest Neighbors, SVM: Support Vector Machine, XGBoost, DT: Decision Tree, RF: Random Forest, and MLP: Multi-Layer Perceptron
IF: Isolation Forest, COPOD: Copula-Based Outlier Detection, LOF: Local Outlier Factor, OC-SVM: One-Class Support Vector Machine

Fig. 3: Confusion Matrices (in percentages) for Device Identification using XGBoost

about 80 kernel events belonging to the usage of resources,
hardware, and software activities produced in the IoBT sensors.
Fig. 2 shows the event families selected for malware detection.
After that, one dataset with ”normal” behavior of each IoBT
spectrum sensor is collected for six hours. Then, the rootkits
(Beurk, Diamorphine, and Bdvl), botnets (Mirai and Bashlite),
backdoors (HttpBackdoor, Python Backdoor, and TheTick),
and ransomware (Ransomware PoC) mentioned in Section II
are executed in each IoBT spectrum sensor. Later, all malware
samples are monitored for six hours while running in a passive
way (without harmful actions being made) and some of them
(backdoors and ransomware) performing command execution or
data leakage. Anomaly detection is performed because usually
attack behaviors are unknown. Therefore, deviations in the
normal device behavior can allow detecting attacks not seen
during training or zero-day attacks, which are novel attacks
leveraging an unknown vulnerability. 80% of the normal data
is employed for algorithm training, and the remaining 20%
and the malware behavior for testing. TABLE III shows the
implementation and experimentation details of this use case.

Fig. 4 shows the detection performance of OC-SVM, the
best model. Normal sensor behavior should be evaluated as

“Normal” (in the X axis), and the rest of the attack behaviors
should be evaluated as “Abnormal”. Therefore, the higher the
values in that case, the better the framework works. More than
95% of samples belonging to the different normal behaviors
are correctly detected as ”Normal.” Looking at the rootkits,
the passive and innocuous behavior of Diamorphine is not
detected, but when it establishes an SSH connection every five
seconds (Diamorphine5S), it is identified as malicious. In the
case of passive behavior of Bdvl, it is detected only half of the
time. In terms of Backdoors, the samples belonging to Data
Leak behavior executed by TheTick are detected correctly.
Similarly, it is important to highlight that the rest of the
malicious behaviors are detected in an almost perfect fashion.

This use case has demonstrated the capabilities of SpecForce
to detect malicious activities performed by different malware
affecting resource-constrained IoBT spectrum sensors. Using
software kernel events and anomaly detection techniques, it
is possible to characterize the behavior of the IoBT spectrum
sensors and detect heterogeneous malware when they are in
active and harmful mode.

TABLE 3. Technical details of the use cases implementation.

Data Gathering Data Processing Dataset Gener-
ation AI-Based Cybersecurity

Use Case Source Freq. Resources Technique Feature Vector Dataset Approach: Algo-
rithms Results

Identi-
ty-fo-
cused 
Attack

CPU/GPU
Cycle 
Counters

120 s 1 CPU Core

Sliding 
window 
(100 
values)

18 features: Aver-
age time, standard 
deviation, minimum, 
maximum, or mode of 
selected functions

10 fi ngerprints 
per device, 300 
vectors per 
fi ngerprint

Classifi cation: k-NN, 
SVM, XGBoost, DT, 
RF, MLP

91.92% avg. 
F1-Score 

 Malware 
Detection

Kernel 
Events 5 s 1–4% CPU, 

6.14MB RAM Nothing

80 features: CPU, 
RAM, fi le system, 
drivers, and network 
events

6 hours per 
behavior, 2160 
vectors per 
behavior

Anomaly Detection: 
Autoencoder, IF, 
COPOD, LOF, OC-
SVM

+97% TNR, 
+97% TPR

 SSDF 
Attack 
Detection

System 
Calls 60 s

20.2–30% 
CPU, 6.5MB 
RAM

Bag-of-
Words 
1-gram

17 features: number of 
repetitions per minute 
of each syscall

6 hours per 
behavior, 360 
samples per 
behavior

Anomaly Detection: 
Autoencoder, IF, 
COPOD, LOF, OC-
SVM

+99% TNR, 
+92% TPR

k-NN: k-Nearest Neighbors, SVM: Support Vector Machine, XGBoost, DT: Decision Tree, RF: Random Forest, and MLP: Multi-Layer Perceptron
IF: Isolation Forest, COPOD: Copula-Based Outlier Detection, LOF: Local Outlier Factor, OC-SVM: One-Class Support Vector Machine
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The result of this step highlighted the suitability 
of system calls to perform such task in a precise 
way. Therefore, the SpecForce Data Gathering
module uses perf to collect the system calls gen-
erated by a given set of processes scanning the 
spectrum (Fig. 2 for SSDF attacks detection). Once 
the data source is selected, the different normal 
and SSDF attack behaviors are monitored for 6 
hours. The system calls are then processed to gen-
erate a feature vector modeling the activities of the 
IoBT spectrum sensing process. Then, the AI-Based 
Cybersecurity module selects, trains, and evaluates 
anomaly detection algorithms. Table 3 gives the 
technical details of this use case experimentation.

Figure 4 shows the Autoencoder True Nega-
tive Rate (TNR) for normal behavior and the TPR 
of the diff erent SSDF attacks when modifying 20 
MHz of the 1.6 GHz collected spectrum band. It 
can be seen how the normal behavior is recog-
nized with high performance, showing +99 per-
cent TNR. Besides, all SSDF attacks are detected 
with a +92 percent TPR. 

This use case has demonstrated that SpecForce 
is able to successfully detect the different SSDF 
attacks executed in IoBT spectrum sensors with a 
low resource consumption. In particular, system 
calls have shown a precise characterization of the 
spectrum scanning process. Furthermore, when 
they are combined with ML/DL-based anomaly 
detection techniques, it is possible to detect het-
erogeneous SSDF attacks.

conclusIons
This work presents SpecForce, a framework com-
bining behavior fingerprinting and ML/DL tech-
niques to detect heterogeneous cyber-attacks 
affecting IoBT spectrum sensors. SpecForce has 
been deployed in a realistic battlefield scenario 
composed of 25 IoBT spectrum sensors based 
on Raspberry Pi. In such a scenario, first, the 
cybersecurity threats aff ecting the IoBT spectrum 
sensors have been analyzed to later choose iden-
tity attacks, malware, and SSDF attacks exploiting 
these threats. 

The detection results obtained by SpecForce 
for each attack family affecting IoBT spectrum 
sensors demonstrate the suitability of the frame-
work in a battlefi eld scenario. More in detail, for 
spoofing attacks, 25 IoBT spectrum sensors (10 
identical RPi3 and 15 identical RPi4) have been 
individually identified based on their hardware 
chip variations. Regarding malware attacks, soft-
ware kernel events and ML-based anomaly detec-
tion techniques have detected rootkits, botnets, 
backdoors and ransomware. Finally, eight diff erent 
SSDF attacks have been detected by combining 
the system calls generated by the spectrum scan-
ning process with anomaly detection techniques.

As future work, it is planned to deploy and val-
idate the SpecForce framework in other scenar-
ios, not only on spectrum sensors. Additionally, 
further objectives and research questions arise 
associated with the privacy management of the 
collected data, seeking to apply Federated Learn-
ing for distributed model generation without data 
sharing between sensors.
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C. SSDF Attacks Detection

The last use case focuses on detecting attacks affecting
spectrum data. As in the previous ones, a literature review is
conducted to identify and select behavioral data sources and
events of IoBT spectrum sensors characterizing the activity of
the spectrum scanning processes affected by SSDF attacks [15].
As these attacks are based on the modification of a legitimate
process, the system calls generated by the software are features
able to reflect the variations in normal activities.

The result of this step highlighted the suitability of system
calls to perform such task in a precise way. Therefore, the
SpecForce Data Gathering module uses perf to collect the
system calls generated by a given set of processes scanning
the spectrum (see Fig. 2 for SSDF attacks detection). Once
the data source is selected, the different normal and SSDF

attack behaviors are monitored for ≈6 hours. The system calls
are then processed to generate a feature vector modeling the
activities of the IoBT spectrum sensing process. Then, the
AI-Based Cybersecurity module selects, trains, and evaluates
anomaly detection algorithms. TABLE III gives the technical
details of this use case experimentation.

Fig. 4 shows the Autoencoder True Negative Rate (TNR)
for normal behavior and the TPR of the different SSDF attacks
when modifying 20 MHz of the 1.6 GHz collected spectrum
band. It can be seen how the normal behavior is recognized
with high performance, showing +99% TNR. Besides, all SSDF
attacks are detected with a +92% TPR.

This use case has demonstrated that SpecForce is able to
successfully detect the different SSDF attacks executed in
IoBT spectrum sensors with a low resource consumption. In
particular, system calls have shown a precise characterization
of the spectrum scanning process. Furthermore, when they are
combined with ML/DL-based anomaly detection techniques, it
is possible to detect heterogeneous SSDF attacks.

V. CONCLUSIONS

This work presents SpecForce, a framework combining
behavior fingerprinting and ML/DL techniques to detect
heterogeneous cyber-attacks affecting IoBT spectrum sensors.
SpecForce has been deployed in a realistic battlefield scenario
composed of 25 IoBT spectrum sensors based on Raspberry
Pi. In such a scenario, first, the cybersecurity threats affecting
the IoBT spectrum sensors have been analyzed to later choose
identity attacks, malware, and SSDF attacks exploiting these
threats.

The detection results obtained by SpecForce for each
attack family affecting IoBT spectrum sensors demonstrate
the suitability of the framework in a battlefield scenario. More
in detail, for spoofing attacks, 25 IoBT spectrum sensors (10
identical RPi3 and 15 identical RPi4) have been individually
identified based on their hardware chip variations. Regarding
malware attacks, software kernel events and ML-based anomaly
detection techniques have detected rootkits, botnets, backdoors
and ransomware. Finally, eight different SSDF attacks have
been detected by combining the system calls generated by the
spectrum scanning process with anomaly detection techniques.

As future work, it is planned to deploy and validate the
SpecForce framework in other scenarios, not only on spectrum
sensors. Additionally, further objectives and research questions
arise associated with the privacy management of the collected
data, seeking to apply Federated Learning for distributed model
generation without data sharing between sensors.
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In the last years, the number of IoT devices deployed has suffered an undoubted explo-
sion, reaching the scale of billions. However, some new cybersecurity issues have appeared
together with this development. Some of these issues are the deployment of unauthorized
devices, malicious code modification, malware deployment, or vulnerability exploitation.
This fact has motivated the requirement for new device identification mechanisms based
on behavior monitoring. Besides, these solutions have recently leveraged Machine and
Deep Learning (ML/DL) techniques due to the advances in this field and the increase in
processing capabilities. In contrast, attackers do not stay stalled and have developed ad-
versarial attacks focused on context modification and ML/DL evaluation evasion applied
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the impact of these attacks on individual identification solutions and their countermea-
sures. This work explores the performance of hardware behavior-based individual device
identification, how it is affected by possible context- and ML/DL-focused attacks, and
how its resilience can be improved using defense techniques. In this sense, it proposes an
LSTM-CNN architecture based on hardware performance behavior for individual device
identification. Then, the most usual ML/DL classification techniques have been compared
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A B S T R A C T

In the last years, the number of IoT devices deployed has suffered an undoubted explosion, reaching the scale
of billions. However, some new cybersecurity issues have appeared together with this development. Some of
these issues are the deployment of unauthorized devices, malicious code modification, malware deployment, or
vulnerability exploitation. This fact has motivated the requirement for new device identification mechanisms
based on behavior monitoring. Besides, these solutions have recently leveraged Machine and Deep Learning
(ML/DL) techniques due to the advances in this field and the increase in processing capabilities. In contrast,
attackers do not stay stalled and have developed adversarial attacks focused on context modification and
ML/DL evaluation evasion applied to IoT device identification solutions. However, literature has not yet
analyzed in detail the impact of these attacks on individual identification solutions and their countermeasures.
This work explores the performance of hardware behavior-based individual device identification, how it is
affected by possible context- and ML/DL-focused attacks, and how its resilience can be improved using defense
techniques. In this sense, it proposes an LSTM-CNN architecture based on hardware performance behavior for
individual device identification. Then, the most usual ML/DL classification techniques have been compared
with the proposed architecture using a hardware performance dataset collected from 45 Raspberry Pi devices
running identical software. The LSTM-CNN improves previous solutions achieving a +0.96 average F1-Score
and 0.8 minimum TPR for all devices. Afterward, context- and ML/DL-focused adversarial attacks were applied
against the previous model to test its robustness. A temperature-based context attack was not able to disrupt the
identification, but some ML/DL state-of-the-art evasion attacks were successful. Finally, adversarial training
and model distillation defense techniques are selected to improve the model resilience to evasion attacks,
improving its robustness from up to 0.88 attack success ratio to 0.17 in the worst attack case, without degrading
its performance in an impactful manner.

1. Introduction

The advances in processing and communication technologies
achieved in recent years, enabled by more powerful chips and en-
hanced connectivity, have motivated an explosion in the deployment
of Internet-of-Things (IoT) devices [1]. These devices have generated
various use cases and scenarios [2], such as Industry 4.0, Smart Cities
and Homes, or Healthcare. Therefore, the typology of IoT devices
is also very heterogeneous depending on the required capabilities of
each scenario. In this context, Single-Board Computers (SBC), such as
Raspberry Pi, have gained prominence due to their flexibility, relatively
high processing power and reduced cost.

∗ Corresponding author.
E-mail address: pedromiguel.sanchez@um.es (P.M. Sánchez Sánchez).

However, this increase in processing power not only comes with
advantages. Cybersecurity issues have a greater impact when more
powerful IoT devices are compromised, as they can perform stronger
attacks such as more petitions in a Distributed Denial of Service (DDoS)
or calculations for cryptojacking [3]. Therefore, the securitization of
the IoT scenario leveraging SBCs is a key factor in guaranteeing its
correct functioning. One of the most important aspects is the correct
identification of each device deployed, avoiding the presence of unau-
thorized devices. Static identifiers such as credentials or certificates
were traditionally assigned to the devices, but attackers can clone or
modify these to introduce illegitimate entities [4]. To solve this issue,
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the literature has widely explored the usage of device behavior and
hardware to identify the devices deployed [5].

Behavior-based IoT device identification tasks can be tackled from
different granularity levels depending on the environment require-
ments [5]. There exist two main approaches: device model or type
identification (e.g., camera, light bulb, etc.), based on characteristics
such as network activities or running processes [6], and individual
device identification, where devices from the same model are differ-
entiated based on hardware manufacturing variations using low-level
component analysis or radio frequency fingerprinting [7]. Individual
device identification is the one offering the best security guarantees.
However, it requires lower-level behavior monitoring, as chip man-
ufacturing variations must be analyzed to differentiate devices with
the same hardware and software [8]. This work focuses on individual
device identification and the attacks that can be used to spoil the
identification: attacks on the data (through manipulation of the device
or environment/context) and attacks on the identification techniques
(poisoning). In this sense, hardware performance analysis is one of the
most exploited techniques for identification, monitoring how compo-
nents such as CPU, GPU, or RAM behave or perform when executing a
certain task [7]. However, in these solutions, an attacker might exploit
the component usage or device context to modify the values generating
the fingerprint for device identification and interrupt the identification
process.

Following the trend in other fields, the application of Machine
Learning (ML) and Deep Learning (DL) techniques has gained promi-
nence in IoT security during the last years, including the device iden-
tification task [9]. But with the deployment of these techniques, ad-
versarial attacks against ML/DL models have appeared [10], trying to
affect the training process or fool the model predictions [11]. These
attacks can affect various steps of the ML/DL pipeline. Usually, they
target: (i) the training data to poison the model or include backdoors in
it [12]; (ii) the testing data to find vulnerabilities in the trained model
and change its predictions [13]; or (iii) privacy to infer data from the
model and its gradients [14].

ML/DL-based IoT identification solutions have recently been an
objective for adversarial attacks [15], demonstrating that these solu-
tions are also affected by context modifications [16] or when malicious
adversarial samples are employed in the identification process [17,18].
However, several questions remain when joining hardware behavior-
based individual device identification, ML/DL techniques, and adver-
sarial attacks. Some of these research questions are: (i) which is the
best-performing ML/DL technique for device identification based on
hardware behavior?; (ii) which is the threat model faced by these solu-
tions?; (iii) how device context affects the identification performance?;
(iv) how ML/DL-focused adversarial attacks affect the identification
process?; (v) how defense techniques improve the resilience to context-
and ML/DL-focused adversarial attacks?

To tackle the previous challenges, the main contributions of the
present work are:

• A LSTM-CNN neural network architecture for individual device
identification based on hardware performance behavior of device
CPU, GPU, memory and storage. Hardware monitoring and data
collection are performed from the device itself, leveraging the
different components as internal reference points to avoid the
usage of external sensors. Then, the proposed model considers
performance measurements as data points in a time series for
data processing and pattern extraction. The architecture per-
formance is compared with different ML/DL classification ap-
proaches using the LwHBench dataset [19]. This dataset contains
hardware performance and behavior data from 45 Raspberry Pi
devices running identical software images. The proposed LSTM-
CNN architecture achieves an average F1-Score of +0.96, cor-
rectly identifying all the devices with a +0.80 True Positive
Rate.

• The threat model definition of the adversarial situations that
might affect a self-contained hardware behavior-based individ-
ual device identification solution. It encompasses the complete
data lifecycle, from the internal fingerprint generation to its
evaluation, usually using ML/DL techniques.

• The analysis of the impact of different context- and ML/DL-
focused adversarial evasion attacks on the individual identifica-
tion framework. In terms of context attacks, this analysis shows
that temperature does not have a big impact on the performance
of the identification solution, and that other context conditions,
such as kernel interruptions, can be mitigated during data col-
lection. Regarding ML/DL evasion attacks, the state-of-the-art
approaches are successful when performing a targeted attack
during evaluation, achieving up to 0.88 attack success rate, and
performing a successful device spoofing.

• The application of different defense techniques aiming to improve
the model robustness against the previous adversarial attacks. The
defense techniques selected are adversarial training and model
distillation. The results show that the combination of both tech-
niques reduces the attack impact to ≈0.18 success rate in the
worst case. Additionally, state-of-the-art robustness metrics such
as empirical robustness or loss sensitivity also show an effective
increase.

The code, data, and DL models associated with the previous re-
sults and experiments are publicly available in [20] for reproducibility
purposes.

The remainder of this article is structured as follows. Section 2
gives an overview of hardware-based individual device identification,
context-focused attacks, and ML/DL-focused attacks. Section 3 de-
scribes the ML- and hardware-based device fingerprinting solution for
individual device identification. Section 4 gives an overview of the
threat model that an IoT device identification solution suffers. Section 5
gives an overview of the implementation and impact of the adversarial
attack on device identification. Next, Section 6 describes how the
application of defense mechanisms enhances the solution resilience
against adversarial attacks. Section 7 contrasts the key takeaways
and acknowledges limitations. Finally, Section 8 gives an overview of
the conclusions extracted from the present work and future research
directions.

2. Related work

This section gives the insights required to understand the concepts
used in the following sections and reviews the main works in the
literature associated with the present one.

2.1. Hardware-based individual device identification

In [7], the authors compared the deviation between the CPU and
GPU cycle counters in Raspberry Pi devices to perform individual
identification of 25 devices. The identification was performed using
XGBoost, achieving a 91.92% True Positive Rate (TPR). Similarly, [16]
performed identical device identification using GPU performance be-
havior and ML/DL classification algorithms. Accuracy between 95.8%
and 32.7% was achieved in nine sets of identical devices, including
computers and mobile devices. Only the impact of temperature changes
was verified.

Sanchez-Rola et al. [21] identified +260 identical computers by
measuring the differences in code execution performance. They em-
ployed the Real-Time Clock (RTC), which includes its own physical
oscillator, to find slight variations in the performance of each CPU.
In [8], the author compared the drift between the CPU time counter, the
RTC chip, and the sound card Digital Signal Processor (DSP) to identify
identical computers. Finally, Deb Paul et al. [22] were able to uniquely
identify 20 IoT devices by using an external sensor to leverage the delay
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in the signals going through the printed circuit boards (PCBs) of the
device. They also verified the identification stability under different
temperature conditions, emulating context-attacks.

Other works have explored the usage of Physical Unclonable Func-
tions (PUFs) for IoT device identification [23]. PUFs are digital finger-
printing technologies that leverage inherent manufacturing variations
as unique identifiers. It generates hardware-specific cryptographic keys,
enhancing security by making the devices virtually impossible to clone
or impersonate. However, PUFs are out of the scope of this work,
as their usage requires the addition of new hardware components or
the low-level modification of the hardware components or firmware,
limiting the real-world scalability and usability of the solutions based
on this technology [7].

2.2. Context-focused attacks

In hardware-based identification solutions, the context in which the
identification code or tasks are executed might influence the collected
data and, therefore, the results achieved. In this sense, the temperature
can affect the frequency of crystal oscillators or hardware load might
introduce delays due to the scheduling between processes. Therefore,
a malicious attacker could change these context conditions to affect
the identification, making it unusable or generating measurements that
mimic another device.

The works described in the previous section briefly discussed con-
text issues that may affect the identification process. [7] showed that
device rebooting and other processes running in the device impacted
the identification results if proper process isolation mechanisms for
data collection were not implemented. Besides, they checked that
usual temperature changes based on device load did not affect the
results. [16] demonstrated that environment temperatures between
26.4 ◦C and 37 ◦C did not affected to the identification results. How-
ever, rebooting had an impact on the identification, dropping the
results to 50.3% accuracy. The authors also leave voltage variations as a
future line to evaluate. In [21], the authors evaluated the identification
application under different CPU loads and temperatures, with positive
results in both cases. Finally, [8] only mentioned temperature impact
analysis as part of future work and no context-based experiments were
performed.

As can be seen, none of the previous works on device fingerprinting
and identification based on hardware performance behavior has exten-
sively explored the impact that context-focused attacks may have on
their results.

2.3. ML/DL-focused adversarial attacks

Adversarial ML/DL [11] is a research field that seeks to develop not
only accurate models, but also highly robust models against tampering.
It studies the possible attacks against ML/DL models as well as the
defense techniques that can secure these. There exist a wide variety
of taxonomies for the attacks that an ML/DL model may suffer. In
this sense, attacks can be classified in: (i) Poisoning, when the model
is attacked during training using malicious samples; (ii) Evasion, when
the model evaluation process is attacked, trying to fool a legitimately
trained model; and (iii) Model Extraction attacks, where the attacker
tries to infer the model based on its predictions.

In this work, the focus is on evasion attacks, as the intention is to
full a model trained for device identification, making it misclassify a
malicious device for the legitimate one. Here, the main types of attacks
are: non-targeted attacks, when the objective is just to misclassify a
sample to any different class that is not the original one, and targeted
attacks, when the objective is to evaluate the malicious sample as a
concrete objective class. Several evasion attacks can be found as the
most common ones in the literature:

• As one of the first evasion attacks for DL, Goodfellow et al. [24]
proposed the Fast Gradient Sign Method (FGSM). This attack
performs one-step updates in the adversarial sample following the
direction of the gradient loss, trying to move the sample into the
boundary of a different class. The equation characterizing FGSM
can be seen as:

𝑋𝑎𝑑𝑣 = 𝑋 + 𝜖 ∗ 𝑠𝑖𝑔𝑛(∇𝑥𝐽 (𝑋, 𝑌 )) (1)

where 𝜖 is a parameter defining the size of the perturbation
update and ∇𝑥𝐽 (𝑋, 𝑌 ) is the gradient loss function for the sample
𝑋.

• Basic Iterative Method (BIM) [25] is a improvement over FGSM
by including iterative optimization. This is, applying FGSM sev-
eral times with small perturbation steps.

• Momentum Iterative Method (MIM) [26] integrates momentum
into the iterative FGSM or BIM, avoiding local minimum or
overfitting influence in the generated adversarial samples.

• Projected Gradient Descent (PGD) [27] is a generalization of BIM
that has no constraints on the iteration steps.

• DeepFool 𝐿2 attack [28] minimizes the Euclidean distance be-
tween the original and the adversarial samples by estimating the
model decision boundary using a linear classifier.

• Jacobian-based Saliency Map Attack (JSMA) [29] is another com-
mon attack in the literature. It uses the Jacobian matrix [30] of
the model to find the sensitivity direction of the model and per-
form feature selection to minimize the number of characteristics
modified from the original data sample.

• Boundary Attack [31] generates a random adversarial sample and
then performs optimizations in the 𝐿2 − 𝑛𝑜𝑟𝑚 of the perturbation
to make the sample similar to the original legitimate vector, but
maintaining the misclassification result.

• Carlini&Wagner (C&W) Attack [32] proposes a optimization-
based adversarial sample generation. It can be applied to three
distance metrics: 𝐿0, 𝐿2, 𝐿∞. 𝐿0 measures the number of features
to be modified, 𝐿2 measures the Euclidean distance between a
benign and adversarial sample, and 𝐿∞ measures the maximum
change to any feature.

• Generative Adversarial Network (GAN)-based attack [33] uses
GAN models to generate realistic adversarial samples able to fool
the classifier.

Numerous defense mechanisms have arisen against the previous
attacks and others that may be found in the literature [34]. The
objective of these countermeasures is to make the models resistant to
adversarial samples. Generally, these can be classified into detection
and robustness methods, depending if the aim is to detect crafted
malicious samples prior to evaluation or make the model resistant to
the evaluation of these, respectively. Besides, defense mechanisms can
be attack-specific or attack-agnostic, depending on whether they are
focused on improving resilience against a specific attack.

One of the most extended defense techniques to avoid evasion
attacks is Adversarial training [35], where malicious samples are em-
ployed for model training, avoiding the impact of the attacks that
generated those samples. Knowledge distillation [36] has also been ap-
plied for robustness improvement at training. This technique seeks
to generate smaller models using the base model outputs as features,
hence making the knowledge of the larger model more accessible
and efficient to use. It can improve the model robustness by gener-
ating smoother decision boundaries and less sensitivity to adversarial
samples [37].

2.3.1. Robustness metrics
Robustness metrics provide a quantitative measure to gauge the

stability and resilience of neural networks against adversarial pertur-
bations and input variations. The main metrics found in the literature
are:
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• CLEVER score [38], denoted as Cross Lipschitz Extreme Value for
Network Robustness, measures the smallest perturbation required
to alter the classification result by utilizing the local Lipschitz con-
stant [39]. The higher the Lipschitz constant, the more sensitive
the network is to input perturbations.

• Loss sensitivity [40] calculates the largest variation of the output
of a neural network under a small change in its input. Overall, it
quantifies the smoothness of a model [41]. A model is considered
smoother when there is minimal variation in its output. In math-
ematical terms, loss sensitivity is depicted by the gradient of the
loss function concerning the input data. The gradient magnitude
reveals how the loss changes in response to variations in the
input. Eq. (2) calculates Loss sensitivity (g), where  represents
the loss function. A smaller value of g (i.e., a smaller variation
in the output for perturbed inputs) indicates that the model
is smoother and potentially more robust to input variations or
adversarial attacks.

𝑔 =
‖‖‖‖
𝜕
𝜕𝑥

‖‖‖‖1 (2)

• Empirical robustness, as defined in [28], quantifies the aver-
age smallest disturbance necessary to alter a model prediction.
This is mathematically represented in Eq. (3), where 𝐶 stands
for a trained classifier, 𝜌 denotes an untargeted attack, and 𝑋
represents the test data. Initially, adversarial inputs, 𝜌(𝑥𝑖), are
generated, and the classifier is evaluated against these inputs.
Notably, the equation only accounts for the adversarial inputs
that successfully deceive the model. Hence, only the indices 𝐼 ∈
1, 2, 𝑛 where 𝐶(𝑥𝑖) ≠ 𝐶(𝜌(𝑥𝑖)) are considered. The selection of
appropriate attacks is intricate, typically relying on the success
rate and computational efficiency of FGSM, C&W, and DeepFool
attacks.

𝐸𝑅(𝐶, 𝜌,𝑋) = 1
|𝐼|

∑
𝑖∈𝐼

‖𝜌(𝑥𝑖) − 𝑥𝑖‖
‖𝑥𝑖‖ (3)

• Confidence Score measures the likelihood of accurate sample pre-
dictions. It assesses the consistency of predictions; a model with
more stable predictions is deemed more robust [41]. Eq. (4)
calculates the confidence score as the average of precision scores
across all thresholds. Here, 𝑇 represents the labels, and 𝑇ℎ𝑟𝑠
denotes the probabilities that a vector is classified correctly.

𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 = 1
|𝑇ℎ𝑟𝑠|𝛴𝑇

𝑇𝑃
𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

(4)

Each metric offers a unique perspective on robustness, ranging from
leveraging local Lipschitz constants to quantifying model smoothness
and evaluating the average minimal perturbations required to alter
model predictions.

2.3.2. Adversarial ML in IoT identification and security
In this sense, [17] is the closest work to the one at hand. The

authors analyzed the impact of different non-targeted and targeted ad-
versarial attacks (FGSM, BIM, PGD and MIM) over a CNN implemented
for radiofrequency-based individual device identification. Similarly,
Namvar et al. [18] evaluated the resilience of network-based IoT identi-
fication ML solutions against adversarial samples generated with FGSM,
BIM, and JSMA. They showed how classifier models giving +90%
accuracy decrease their performance to 75%–55% when exposed to
maliciously crafted samples. From a different perspective, Benegui and
Ionescu [42] evaluated the impact of adversarial samples over ML/DL
models for user identification based on motion sensors, achieving near
to 100% attack success rates with FGSM, JSMA, DeepFool, and Bound-
ary Attacks. Later, [43] demonstrated that a GAN-based attack has
more impact than the previous attacks in the user identification context.

From a more generic perspective, [15,44] reviewed the threat of
adversarial attacks in ML solutions applied in network security. They

proved the high impact of adversarial attacks over ML-based security
systems, highlighting the need for more research on attack and defense
methods in the area.

Table 1 shows a comparison between the different solutions re-
viewed in this section. It can be seen how none of the previous works
combines the application of context- and ML/DL-focused attacks. Be-
sides, some solutions require external sensors or components to perform
the hardware-based identification. Finally, the ML/DL-focused attack
papers in the context of device or user identification have not explored
the reward from the defense mechanisms available in the literature.
Therefore, the present work solves a gap in the literature, providing
useful insights in the impact of attack and defense techniques on the
context of hardware- and ML/DL-based individual device identification.

3. Individual device identification

The present section describes the ML/DL framework implemented
for hardware-based individual device identification. It sets the baseline
results for later attack and defense technique impact analysis. This
approach follows the higher privilege principle [45]. This is, using
the highest privileges for the data collection and processing software
deployed in the sensor, isolating it from other processes that might
potentially tamper the process. Even though this countermeasure is
taken, in the next sections, it is assumed that an attacker could tamper
with the solution.

3.1. Dataset collection and preprocessing

This subsection describes how the hardware behavior of the device
is monitored from the device itself in order to generate the fingerprint
representing its internal characteristics.

3.1.1. Dataset collection
For individual device identification based on hardware behavior,

the imperfections in the chips contained in the device should be mon-
itored to be later evaluated. As seen in Section 2, this task has usually
been tackled in the literature by comparing components using different
crystal oscillators or base frequencies, as deviations in the performance
of these components can be noticed from the device itself.

To implement the individual device identification framework, a
dataset leveraging metrics related to the hardware components con-
tained in some devices was required. The dataset was named LwHbench
and more details are available in [19]. In this sense, the dataset col-
lected performance metrics from CPU, GPU, Memory, and Storage from
45 Raspberry Pi devices from different models for 100 days, enough
time to accurately model the performance of the hardware contained
in each device. Different functions were executed in these components,
using other hardware elements (running at different frequencies) as
references for performance measurement. Table 2 summarizes the set
of functions monitored. These functions represent a list of common
operations executed in each component, trying to measure its perfor-
mance. Note that other similar operations could be leveraged in the
data collection process.

The dataset contains per device model: 505 584 samples from 10
RPi 1B+, 784 095 samples from 15 RPi4, 547 800 samples from 10
RPi3 and 548 647 samples from 10 RPiZero. During the data collec-
tion process, several countermeasures were taken to avoid the effect
of noise introduced by other processes running in the devices: fixed
component frequency, so the hardware performance is stable; kernel
level priority, so other processes cannot interrupt the execution of the
code; code executed in an isolated CPU core (in multi-core devices),
so other processes are not present in the CPU trying to get resources;
and the disabling of memory address randomization, so the memory
performance is not degraded by accessing at random points of the
stack. Besides, the dataset was collected under several temperature
conditions, allowing the impact analysis of this context characteristic
in the component performance.
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Table 1
Comparison of previous works on Context and ML/DL-focused adversarial attacks in identification solutions.

Work Platform and
Objective

Attack type Attack technique Defense Results

si te [8]
(2007)

Computer
identification

✗ ✗ ✗ Computer identification based on the comparison
of three physical oscillators using t-test statistic

[21] (2018) Computer
identification

Context-focused CPU load, temperature Process isolation 265 computers uniquely identified. No effect from
CPU load and temperature

[16] (2022) Computer and
mobile
identification

Context-focused Temperature changes and device
reboot

✗ 95.8% and 32.7% accuracy in nine sets of identical
devices. Accuracy drop with device rebooting

[22] (2022) IoT device
identification

Context-focused Temperature and voltage changes ✗- ML attacks
theoretically
considered

20 IoT devices identified using the delay in the
PCB signals. Temperature and voltage changes
impact analyzed.

[7] (2023) IoT device
identification

Context-focused Temperature changes and device
rebooting

Process isolation 91.92% average TPR in 25 devices. No effects
from temperature changes and device rebooting

[42] (2020) User
identification

DL-focused Non-targeted and targeted attacks
(FGSM, JSMA, DeepFool,
Boundary)

✗ Near to 100% attack success over CNNs models
with different depths (from 4 to 12 layers)

[43] (2021) User
identification

DL-focused GAN-based attack ✗ GAN-generated samples were more effective than
FGSM, Deepfool and Boundary when performing
adversarial attacks

[18] (2021) IoT device
identification

ML/DL-focused Non-targeted attacks (FGSM, BIM,
JSMA)

✗ Accuracy decreased from +90% to 75%–55%

[17] (2021) IoT device
identification

ML/DL-focused Non-targeted and targeted attacks
(FGSM, BIM, PGD and MIM)

✗ Proven vulnerability to targeted attacks with
+80% attack success rate.

This work
(2023)

IoT device
identification

Context and
ML/DL-focused

Context: Temperature changes,
CPU load, device rebooting
ML/DL: FGSM, BIM, MIM, PGD,
JSMA, Boundary Attack, C&W

Process isolation,
Adversarial training,
Model distillation

+0.96 average F1-Score. Resilience to temperature
and process-based context attacks. ML/DL evasion
attack resilience improved using model distillation
and adversarial training.

Table 2
Features available in LwHBench dataset [19].

Component Function Monitored feature

– timestamp Unix timestamp
temperature Device core temperature

CPU 1 s sleep GPU cycles elapsed during 1 s CPU sleep
2 s sleep GPU cycles elapsed during 2 s CPU sleep
5 s sleep GPU cycles elapsed during 5 s CPU sleep
10 s sleep GPU cycles elapsed during 10 s CPU sleep
120 s sleep GPU cycles elapsed during 120 s CPU sleep

string hash GPU cycles elapsed during a fixed string
hash calculation

pseudo random GPU cycles elapsed while generating a
software pseudo-random number

urandom GPU cycles elapsed while generating 100
MB using /dev/urandom interface

fib GPU cycles elapsed while calculating
Fibonacci number for 20 using the CPU

GPU matrix mul CPU time taken to execute a GPU-based
matrix multiplication

matrix sum CPU time taken to execute a GPU-based
matrix summation

scopy CPU time taken to execute a GPU-based
graph shadow processing

Memory list creation CPU time taken to generate a list with 1000
elements

mem reserve CPU time taken to fill 100 MB in memory
csv read CPU time taken to read a 500 kB csv file

Storage read × 100 100 CPU time measurements for 100 kB
storage read operations

write × 100 100 CPU time measurements for 100 kB
storage write operations

Table 3
Feature set extracted for validation.

Operation
collected

Python code
function

Sliding windows Statistics
extracted

No.
features

10 s sleep time.sleep(10) 40
120 s sleep time.sleep(120) 40
string hashing hashlib.sha256(str) 10 Sliding windows. 40
urandom os.urandom() Group sizes: Minimum, 40
matrix mul vc.cond_mul() 10, 20, 30, 40, maximum, 40
matrix sum vc.cond_add() 50, 60, 70, mean, 40
list creation list.append() 80, 90, 100 median 40
memory reserve cgroup.set_memory() 40
CSV read pandas.read_csv() 40
1st storage read os.read() 40
1st storage write os.read() 40

Total 440

3.1.2. Data preprocessing
As the first preprocessing technique and following the approach

of [7], sliding-window-based feature extraction was performed per de-
vice, extracting statistical features such as median, average, maximum,
minimum, and summation. The reasoning behind this preprocessing
is that the distribution of raw feature values from each device may
overlap due to the limited variability in the component performance.
Therefore, statistical values such as median or average help to differ-
entiate between partially overlapping distributions. Only some of the
available raw features were selected for this step, as keeping a low
feature number helps to lighten the ML/DL model training. Table 3
describes the set of features extracted from the dataset of each device.

In addition to sliding windows, it was decided to directly evaluate
the raw data vectors without the sliding window processing described
above. The reasoning behind this approach is that having a large
dataset of raw values can work well in the case of DL models, which can
automatically extract internal insights from the data. In this approach,
only timestamp and temperature features were filtered, using the rest
of the values (215 values in total) as features for the models.

Journal Article 5

PhD Thesis – Pedro Miguel Sánchez Sánchez 85



Future Generation Computer Systems 152 (2024) 30–42

35

P.M. Sánchez Sánchez et al.

Fig. 1. LSTM-1DCNN architecture proposed.

Finally, it is also decided to perform a time series-based evaluation,
concatenating together the available samples in groups of 10 vectors.
This grouping technique allows the application of time series DL meth-
ods such as LSTM and 1D-CNN models [46,47]. These models can
extract complex trends in the data that may achieve better results than
the isolated processing and evaluation of individual samples.

3.2. LSTM-1DCNN architecture

This work proposes a client–server framework that leverages an
LSTM-1DCNN neural network architecture for the classification of the
performance samples obtained from the device. These models have
shown good performance in very varied time series scenarios, such as
human activity recognition [48], gold price forecast [49], or DNA pro-
tein binding [50]. The data generated and preprocessed in the device
are sent to a server for model training and later device evaluation and
identification.

The network architecture combines LSTM and 1D-CNN layers to
extract patterns in the series fed as input. The main benefit of this
approach is that combines the recursion patterns extracted by the LSTM
layer, due to its memory capabilities, with the space patterns extracted
by the 1D-CNN layer, as kernels are applied to close features to derive
more complex ones.

Fig. 1 describes the neural network architecture explained above,
depicting the size of each layer. The LSTM layer is configured to return
sequences, so the 1D-CNN layer can be applied afterward in those
sequences. After the 1D-CNN layer, Max-Pooling is applied. Finally, a
fully connected layer of 100 neurons is added before the last layer with
45 outputs, one per device. In the implementation, the LSTM layer has
64 neurons, the 1D-CNN layer uses ReLU is used as activation function
in the hidden layers and ADAM is used as optimizer during training
(Table 4 show the complete list of hyperparameters tested).

3.3. Classification-based device identification performance

Once the two data preprocessing approaches were applied to gen-
erate two datasets, one with raw values and another with sliding-
window-based features, the next step was to compare the proposed
LSTM-1DCNN model with the most common ML/DL classification ap-
proaches. In [7], the authors directly applied ML classifiers using CPU
and GPU-related statistical features similar to the ones described in
the previous section. Moreover, LSTM and 1D-CNN networks were
also tested for the time series approaches. Finally, a more complex
multi-input network that combined one LSTM and one 1D-CNN input
layer was also implemented for comparison, this model is denoted
as Multi_1DCNN_LSTM. The experiments were performed in a server
equipped with an AMD EPYC 7742 CPU and an NVIDIA A100 GPU.

Table 4
Classification algorithms and hyperparameters tested against the proposed architecture.

Model Hyperparameters tested

Naive Bayes No hyperparameter tunning required
k-NN 𝑘 ∈ [3, 20]

SVM 𝐶 ∈ [0.01, 100], 𝑔𝑎𝑚𝑚𝑎 ∈ [0.001, 10]
𝑘𝑒𝑟𝑛𝑒𝑙 ∈ {‘𝑟𝑏𝑓 ’, ‘𝑙𝑖𝑛𝑒𝑎𝑟’, ‘𝑠𝑖𝑔𝑚𝑜𝑖𝑑’, ‘𝑝𝑜𝑙𝑦’}

AdaBoost 𝑛_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 ∈ [10, 100]

XGBoost 𝑙𝑟 ∈ [0.01, 0.3], 𝑚𝑎𝑥_𝑑𝑒𝑝𝑡ℎ ∈ [3, 15]
𝑚𝑖𝑛_𝑐ℎ𝑖𝑙𝑑_𝑤𝑒𝑖𝑔ℎ𝑡 ∈ [1, 7], 𝑔𝑎𝑚𝑚𝑎 ∈ [0, 0.5],
𝑐𝑜𝑙𝑠𝑎𝑚𝑝𝑙𝑒_𝑏𝑦𝑡𝑟𝑒𝑒 ∈ [0.3, 0.7]

Decision Tree 𝑚𝑎𝑥_𝑑𝑒𝑝𝑡ℎ ∈ [𝑁𝑜𝑛𝑒, 5, 10, 15, 20]
𝑚𝑖𝑛_𝑠𝑎𝑚𝑝𝑙𝑒𝑠_𝑠𝑝𝑙𝑖𝑡 ∈ [2, 3, 4, 5]

Random Forest 𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓 _𝑡𝑟𝑒𝑒𝑠 ∈ [50, 1000]
𝑚𝑎𝑥_𝑑𝑒𝑝𝑡ℎ ∈ [𝑁𝑜𝑛𝑒, 5, 10, 15, 20]
𝑚𝑖𝑛_𝑠𝑎𝑚𝑝𝑙𝑒𝑠_𝑠𝑝𝑙𝑖𝑡 ∈ [2, 3, 4, 5]

MLP 𝑛_𝑙𝑎𝑦𝑒𝑟𝑠 ∈ [1, 3], 𝑛𝑒𝑢𝑟𝑜𝑛𝑠_𝑙𝑎𝑦𝑒𝑟 ∈ [100, 500],
𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 ∈ [32, 64, 128, 256, 512]
𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑟𝑒𝑙𝑢, 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 = [𝑆𝐺𝐷, 𝑎𝑑𝑎𝑚, 𝑎𝑑𝑎𝑚𝑎𝑥]

1D-CNN 𝑓𝑖𝑙𝑡𝑒𝑟𝑠 = [16, 32, 64, 128], 𝑘𝑒𝑟𝑛𝑒𝑙_𝑠𝑖𝑧𝑒 = [3, 5, 7],
𝑛_𝑙𝑎𝑦𝑒𝑟𝑠 = [1, 2, 3], 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 = [𝑆𝐺𝐷, 𝑎𝑑𝑎𝑚, 𝑎𝑑𝑎𝑚𝑎𝑥]

LSTM 𝑛𝑒𝑢𝑟𝑜𝑛𝑠 = [10, 100], 𝑛_𝑙𝑎𝑦𝑒𝑟𝑠 = [1, 2, 3],
𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 = [𝑆𝐺𝐷, 𝑎𝑑𝑎𝑚, 𝑎𝑑𝑎𝑚𝑎𝑥]

Multi_1DCNN_LSTM 𝑖𝑛𝑝𝑢𝑡_𝑙𝑎𝑦𝑒𝑟𝑠 = [2, 3], 𝑐𝑛𝑛_𝑓𝑖𝑙𝑡𝑒𝑟𝑠 = [16, 32, 64, 128],
𝑐𝑛𝑛_𝑘𝑒𝑟𝑛𝑒𝑙_𝑠𝑖𝑧𝑒 = [3, 5, 7], 𝑙𝑠𝑡𝑚_𝑛𝑒𝑢𝑟𝑜𝑛𝑠 = [10, 100]
𝑛_𝑙𝑎𝑦𝑒𝑟𝑠 = [1, 2, 3], 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 = [𝑆𝐺𝐷, 𝑎𝑑𝑎𝑚, 𝑎𝑑𝑎𝑚𝑎𝑥]

Table 4 describes the algorithms and hyperparameters tested against
the proposed architecture. Besides, for the algorithms requiring data
normalization, QuantileTransformer [51] was applied, as the data from
the different device models had different distributions based on their
hardware capabilities. 80% of the data was used for training and cross-
validation, while 20% was used for testing. The train/test splitting was
done without vector shuffling to avoid that possible order correlation
in the vectors might influence the results.

Table 5 depicts the classification results for each algorithm (with
its best hyperparameter setup) in both of the generated datasets. The
performance metrics are Accuracy, average Precision, average Recall,
and average F1-Score: (TP: True Positives, TN: True Negatives, FP: False
Positives, FN: False Negatives)

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝐹𝑁 + 𝑇𝑁 + 𝐹𝑃

(5)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(6)

𝑅𝑒𝑐𝑎𝑙𝑙 𝑜𝑟 𝑇𝑃𝑅 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(7)

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

(8)

It can be seen that the LSTM-1DCNN model is the classification
model with the best classification performance, achieving around 0.96
in all the reported metrics in the case of the usage of raw data features.
It also shows how the time series approaches using DL-based models
are the ones with the best performance, achieving +0.93 in all the
reported metrics and improving XGBoost, which was the model with
the best performance in similar literature solutions. Besides, Fig. 2
shows the confusion matrix for each device. It can be appreciated that
all devices show +0.80 TPR (True Positive Rate), therefore having
positive identification of all of them.

The comprehensive experimentation conducted in this study un-
derscores the superior performance of the LSTM-1DCNN model in
device identification tasks, particularly when utilizing raw data fea-
tures. This model not only outperformed traditional machine learning
classifiers but also demonstrated a significant improvement over the
best-performing models cited in related literature. From this experi-
ment, it is interesting to observe that the use of raw data features
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Fig. 2. Individual device identification confusion matrix.

Table 5
Baseline classification model performance.
Model Raw data features Sliding-window features

Accuracy Avg. precision Avg. recall Avg. F1 Accuracy Avg. precision Avg. recall Avg. F1

Single vector approaches

Naive Bayes 0.4569 0.4735 0.4569 0.4473 0.6829 0.6935 0.6829 0.6719
k-NN 0.4526 0.4679 0.4526 0.4472 0.5274 0.5410 0.5274 0.5285
SVM 0.7838 0.7955 0.7829 0.7849 0.7375 0.7434 0.7318 0.7297
AdaBoost 0.0705 0.0060 0.0705 0.0110 0.0706 0.0060 0.0706 0.0110
XGBoost 0.9059 0.9173 0.9056 0.9087 0.7498 0.7655 0.7498 0.7461
Decision Tree 0.7816 0.7896 0.7825 0.7837 0.6932 0.7045 0.6932 0.6910
Random Forest 0.8549 0.8664 0.8542 0.8570 0.7487 0.7615 0.7487 0.7430
MLP 0.8895 0.8960 0.8880 0.8899 0.6840 0.6988 0.6758 0.6749

Time series approaches (10 values)

1D-CNN 0.9428 0.9453 0.9428 0.9428 0.6941 0.7170 0.6941 0.6862
LSTM 0.9346 0.9430 0.9346 0.9346 0.7225 0.7345 0.7225 0.7147
LSTM_1D-CNN 0.9602 0.9626 0.9602 0.9602 0.7149 0.7287 0.7149 0.7080
Multi_1DCNN_LSTM 0.9535 0.9553 0.9535 0.9535 0.6784 0.6947 0.6784 0.6700
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Fig. 3. Threat impact on the different steps of the identification process.

instead of sliding-window ones achieved better results in most of the
classification models, something that contrasts with previous works in
the literature [7]. This can be a consequence of using a larger dataset
than the ones used previously, which also includes information about
memory and storage ([7] only included features regarding CPU and
GPU).

4. Threat model

This section details the threat model faced by an ML/DL-based
device identification solution based on internal hardware performance
monitoring. In this sense, an attacker may try to affect the two different
sides of the identification: (i) the hardware generating the data or (ii)
the ML/DL models in charge of the data evaluation. Fig. 3 reflects the
hardware-based identification process and where the different threats
can disturb the solution.

• TH1. Fingerprint eavesdropping and hijacking. An adversary could
read the data composing a fingerprint, either at the level of in-
device data collection, communication, or during processing (in
a server or the device itself), and then use it in another device
to impersonate the identity of the first. This threat implies a
reduced knowledge of the fingerprint generation process and the
functions and components used during the process. This threat
primarily exploits the vulnerabilities in data transmission and
storage. An attacker might employ techniques like packet sniffing
to capture data during transmission. They could also exploit weak
encryption methods or even unencrypted data storage to access
the fingerprint data. Once the data is accessed, it can be replayed
or used in another device to impersonate the original device. The
attacker might also exploit weak authentication protocols or lack
of multi-factor authentication to gain unauthorized access.

• TH2. Fingerprint forgery. Since the components and frequencies
of the devices are public, an attacker with knowledge about
the functions that are executed to generate the fingerprint could
try to generate a new one that resembles that of a legitimate
device. This threat would be triggered possibly on a trial/error
or brute force basis. This threat requires thorough knowledge
of the implementation of the fingerprint generation process and
the values composing the fingerprint. This threat involves a deep
understanding of the device hardware and software components.
An attacker might use tools to monitor the device performance
metrics, such as CPU usage, memory allocation, and power con-
sumption, to reverse engineer the fingerprint generation process.

They might also exploit public documentation or even insider
information to gain knowledge about the specific algorithms and
processes used. Once they have this knowledge, they can craft or
modify fingerprints to impersonate legitimate devices.

• TH3. Context modification. As the fingerprint is based on data
collected from the performance of the execution of certain tasks
in the software, an attacker may try to modify the conditions
under which the fingerprint is generated. This can neglect to
successfully recognize a legitimate device or generate fingerprints
that pretend to mimic another device. The context can be mod-
ified from several perspectives, for example raising the device
temperature (using external tools or exhaustively using the hard-
ware) or introducing software that may add kernel interruptions
in the fingerprint collection program, which should be isolated
from these interactions as much as possible. This threat exploits
the environmental and operational conditions under which the
fingerprint is generated. For instance, an attacker might use ex-
ternal heaters or coolers to manipulate the device temperature.
They could also run resource-intensive tasks to change the device
performance metrics. On the software side, they might introduce
malware or other software that interrupts or alters the fingerprint
collection process. For instance, a malware that causes frequent
CPU spikes could distort the fingerprint. Additionally, rebooting
the device frequently or altering its clock speed can also impact
the fingerprint generation.

• TH4. ML/DL evaluation evasion. In ML/DL-based solutions, an at-
tacker with enough knowledge or access to the evaluation model
can be able to craft malicious data samples to fool the ML/DL
solution. These samples can target and impersonate a specific
device following a trial and error approach or using a targeted
attack. This threat capitalizes on the vulnerabilities in ML/DL
models. An attacker, with knowledge of the model architecture
and parameters, can craft adversarial samples that the model
misclassifies. Techniques like gradient ascent on the input data or
perturbing the input data in a way that the model output changes
can be employed. The attacker might also exploit transferability,
where adversarial samples crafted for one model can fool another
model. They could use tools and libraries specifically designed
for crafting adversarial attacks, or even exploit weak spots in
the model architecture, like layers with fewer neurons or weak
activation functions. In this sense, several adversarial attacks have
been proposed in the literature as shown in Section 2.

Therefore, a proper individual device identification solution has to
consider and evaluate the previous threats in order to ensure correct
functioning and attack resilience. In essence, while ML/DL-based de-
vice identification solutions offer advanced capabilities, they are not
immune to threats. Ensuring robustness against these threats requires
a multi-faceted approach, encompassing secure data transmission and
storage, robust fingerprint generation processes, resilient ML/DL mod-
els, and continuous monitoring and updating of the system to counter
emerging threats.

5. Adversarial attacks

This section shows the results of the different adversarial attacks
tested on the previous ML/DL-based device identification model. These
adversarial attacks reflect the implementation of the threats described
in the previous section. The objective is to measure how vulnerable the
model is to these attacks if an adversary wants to impersonate a given
device or disrupt the identification process. The threats reflecting the
tested attacks are: TH2, TH3, and TH4. TH1. Fingerprint eavesdropping
and hijacking is assumed to be solved by using encryption in all com-
munications and the higher privilege principle in all the processes of
the device and server.
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Fig. 4. Temperature distribution in the collected dataset.

5.1. Identification disruption attack (TH3)

The objective of an identification disruption attack is to deny the
identification of a legitimate device by performing a context-based
attack. Therefore, it is implementing TH3. Context modification. Here,
the adversary seeks to modify the device hardware performance metrics
by changing the device environmental and contextual conditions. Then,
the device can no longer be identified properly, and the service is
affected. In this attack, the objective is not the generation of adversarial
samples that mimic a different device, but the generation of noisy
samples that make the identification process of the legitimate device
not possible. This experiment evaluates how resilient the identification
solution is to context and environmental changes.

Based on the results in previous research [7,16], the dataset was
collected considering context stability conditions as mentioned in Sec-
tion 3. These conditions ensured that the collected data was not affected
by other processes in the device. Therefore context-based attacks lever-
aging factors such as device rebooting or kernel interruption from other
processes are not successful because these were already considered
during data collection. Moreover, [7] proved that if the stability and
isolation measurements are not included during data collection, the
hardware-based identification becomes unstable and does not work
properly when the context changes.

Regarding temperature, an attacker could try to rise the device
temperature by externally interacting with the device with a heat
source or by extensively executing resource-demanding tasks in the de-
vice. To represent this issue during data collection, the environmental
conditions were modified by adding heatsinks to the components and
turning on/off fans attached to the devices during data collection. In
this sense, Fig. 4 shows the temperature distribution in the samples
contained in the dataset. It can be seen that the temperature during
data collection varied from 30 ◦C to +60 ◦C.

The temperature conditions were randomly varied during data col-
lection. Therefore, the train and test datasets employed in Section 3 do
not have a temperature-based bias. However, an attacker might induce
new temperature conditions not seen during fingerprint generation to
disrupt the identification service. To test this attack, the base dataset
of each device was ordered based on the temperature and then divided
into train and test samples following an 80/20 ordered split. Then, a
new model was generated to compare its performance with the one
selected in the previous section. This experiment was repeated both in

Table 6
Temperature-based context attack.

Model Accuracy Avg.
precision

Avg.
recall

Avg.
F1-Score

Min.
TPR

Baseline order 0.9602 0.9626 0.9602 0.9602 0.8045

Temperature
ascending order

0.9621 0.9652 0.9621 0.9619 0.6387

Temperature
descending order

0.9394 0.9480 0.9392 0.9402 0.6682

ascending and descending order. Note that temperature was only used
for data ordering and not as a feature.

Table 6 compares the baseline model with the ones trained by
ordering the samples according to the temperature they were collected
at. It can be seen how evaluating samples generated at new tempera-
tures does not significantly affect the model performance, with only a
0.03 decrease in the average of the metrics in the case of descending
order and even a slight improvement for ascending order. However,
the minimum TPR of the evaluated devices (the metric employed
for threshold-based identification) is reduced to 0.6682 and 0.6387,
respectively. This drop to around 0.65 is observed in two devices in
both configurations. Although all the devices can still be identified by
setting a threshold in the 0.50 TPR value, these results show that some
devices can be more affected by temperature variations.

This experiment demonstrated that temperature conditions do not
excessively impact the device identification performance, as the av-
erage performance does not degrade when evaluating data generated
under temperatures different from the ones during training. The results
of the temperature-based context attack experiment revealed that while
the identification model performance was not significantly affected
by new temperature conditions, there was a notable decrease in the
minimum TPR for some devices. This indicates that while the majority
of devices remained identifiable, certain devices were more susceptible
to temperature variations. This issue, for some devices, can lead to
wrong identification if the TPR-based threshold is defined at a high
value. Therefore, it can be concluded that the identification approach is
resilient to temperature conditions but an eye should be kept to ensure
that all the devices meet the performance requirements.

5.2. Device spoofing attacks (TH2, TH4)

In the device spoofing attacks, the adversary performs an evasion
attack over the already trained ML/DL model, modifying the evaluated
data to change the model outputs, so a malicious device is identified as
a legitimate one. In this setup, complete knowledge of the model by the
attacker was assumed, therefore having a white-box evasion attack. This
attack fulfills both TH2. Fingerprint forgery and TH4. ML/DL evaluation
evasion, as malicious fingerprint samples are generated in order to
fool the model during evaluation. This attack could also occur as a
consequence of a side-channel attack over the data collection process
where the adversary is able to modify the samples according to his
objective.

As the objective was to fool the device identification model, only
targeted attacks make sense to evaluate how easy it is to impersonate
other devices. In this sense, one device from each RPi model present in
the dataset is selected as the ‘‘target class’’ (constant for attack hyper-
parameter optimization). Then, the samples from the rest of the devices
from each model are used to impersonate that device. Concretely, the
selected targets are:

• RPiZero with MAC 80:1f:02:f1:e3:e0
• RPi1 with MAC b8:27:eb:87:a7:ce
• RPi3 with MAC b8:27:eb:dc:61:2f
• RPi4 with MAC dc:a6:32:e4:48:9e
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Fig. 5. Performance metrics of the robust models on the legitimate test set.

Table 7
Adversarial attack results.

Attack Attack success rate Time

FGSM, 𝜖 = 0.05 0.3056 8.79 s
BIM, 𝜖 = 0.5 0.8823 752.64 s
MIM, 𝜖 = 0.05 0.8537 793.97 s
PGD, 𝜖 = 0.6 0.8823 748.06 s
NewtonFool, 𝑒𝑡𝑎 = 0.1 0.0994 1168.94 s
C&W, 𝐿2 0.1766 63 734.18 s
C&W, 𝐿𝑖𝑛𝑓 0.0834 142 087.72 s
JSMA, 𝜃 = 0.1 Fails –
Boundary attack 0.2507 379 232.28 s

For the implementation of the attacks, the Adversarial Robustness
Toolbox (ART) [52] is employed, as it provides straightforward imple-
mentations for the attacks detailed in Section 2. Attack Success Rate
(ASR) was considered as the metric for the experiments. In targeted
attacks, this metric can be defined as the accuracy of the adversarial
samples on the malicious labels. Besides, as the use case was related
to device identification using performance-based metrics, the distance
between benign and adversarial samples was irrelevant. Note that
this metric would be important in other use cases, such as image
recognition, where the adversarial and benign samples should not be
distinguishable by a human.

The attacks selected to be tested are the ones explained in Section 2.
However, the DeepFool attack is discarded as it is only untargeted. For
this reason, a variant called NewtonFool [53] is used in this work.
For each attack, an iteration in its main hyperparameters has been
performed to find the most successful configuration (the one with a
higher ASR). Table 7 shows the ASR results for each attack together
with the execution time of the adversarial sample generation.

Different target devices were also tested with similar results to the
reported in Table 7. Note that the exact results may vary if other
devices were selected as the target, but the objective was to measure
the model vulnerability to adversarial attacks. In this sense, FGSM, BIM,
and MIM attacks show an ASR over 0.85. All these attacks achieve a
+0.50 success in all the devices employed as adversaries. Therefore,
these attacks would fully compromise an identification solution setting
a threshold in the 0.50 TPR. In contrast, the NewtonFool attack cannot
generate adversarial samples complex enough to target the selected
class and only generates the misclassification of the data used as a base
for crafting adversarial samples. This experiment demonstrated how the
model was vulnerable to targeted adversarial evasion attacks, with over
0.85 ASR in some cases. These attacks could perform device spoofing
if he/she has enough knowledge about the model or enough trial and
error evaluations.

This experiment underscored the model susceptibility to targeted
adversarial evasion attacks. With certain attacks achieving an ASR
of over 0.85, it is evident that an adversary, equipped with suffi-
cient knowledge about the model or through iterative evaluations, can
successfully execute device spoofing. This revelation underscores the
importance of fortifying identification models against such adversarial
threats to ensure the security and integrity of device identification
processes.

Table 8
Attack ASR on the robust models.

Attack Baseline
model

Distilled
model

Adversarial
training

Adversarial
training +
Distilled

FGSM, 𝜖 = 0.05 0.3056 0.2725 0.2704 0.1561
BIM, 𝜖 = 0.5 0.8823 0.3024 0.1482 0.1631
MIM, 𝜖 = 0.05 0.8537 0.7950 0.1918 0.1784
PGD, 𝜖 = 0.6 0.8823 0.2741 0.1155 0.1235
NewtonFool 0.0994 0.0600 0.0846 0.0839
C&W, 𝐿2 0.1766 0.1190 0.0953 0.0952
C&W, 𝐿𝑖𝑛𝑓 0.0834 0.0835 0.0848 0.0841
JSMA, 𝜃 = 0.1 Fails Fails Fails Fails
Boundary attack 0.2507 0.0989 0.0886 0.0861

6. Defense techniques

This section analyzes how defense techniques can improve the
model robustness against ML/DL evasion attacks. ART [52] was also
used to implement the defense techniques for the model-focused at-
tacks, as it includes several model-focused defense techniques. Note
that this defense section focuses on device spoofing attacks because
the defenses for context-based attacks were already applied during data
collection as explained in the previous sections.

The first defense approach applied was to perform adversarial train-
ing, using crafted samples as part of the dataset used for model gen-
eration. In this sense, untargeted adversarial samples were generated
using FGSM, PGD and BIM attacks and concatenated to the original
training dataset. Then, a new model was trained from scratch using
the new training dataset. Besides, defensive model distillation [37]
was also applied over the baseline model to compare the robustness
of each resulting model. Finally, the model trained using adversarial
samples was also distilled. This combination had unstable behavior
during model generation, requiring several attempts to avoid gradient
explosion issues. Fig. 5 shows the results of each defense model when
evaluating the legitimate test dataset (when no attack is present).

It can be seen how the main performance metrics were not degraded
in an impactful manner. Only ≈0.02 performance decrease was noticed
in accuracy and average precision, recall, and F1-Score. Besides, the
minimum TPR was maintained at 0.8 for the adversarial training model
and its distilled version. Once it was verified that the robustness tech-
niques did not decrease the identification performance, the next step
was to verify if the new models were robust against the evasion attacks.
Table 8 shows the ASR for the different attacks when applied to each
model (the baseline one and the ones including robustness techniques).

The combined approach of adversarial training and distillation con-
sistently outperformed other techniques, registering the lowest ASR in
seven out of the eight successful attacks. Most notably, the ASR for
the most potent attacks on the baseline model, namely BIM, MIM, and
PGD, witnessed a significant drop from around 0.85/0.88 to a range of
0.12/0.18. This reduction places the ASR below the 0.5 TPR threshold
earmarked for device identification, highlighting the efficacy of the
combined defense approach.
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Table 9
Robustness evaluation results.

Metric Baseline model Distilled model Adversarial
training

Adversarial
training +
Distilled

CLEVER untargeted,
radius = 8, norm = 2

Avg.:0.0056
Dev.:0.0052

Avg.:0.0058
Dev.:0.0059

Avg.:0.0045
Dev.:0.0033

Avg.:0.0052
Dev.:0.0043

CLEVER targeted,
radius = 8, norm = 2

Avg.:0.0218
Dev.:0.0363

Avg.:0.0239
Dev.:0.0305

Avg.:0.0210
Dev.:0.0243

Avg.:0.0240
Dev.:0.0394

Loss sensitivity 5.1391 4.7920 6.8399 6.7756

Empirical robustness,
FGSM 𝜖 = 0.05

0.0616 0.0613 0.0648 0.0639

Avg.: Average, Dev.: Standard Deviation.

The combination of adversarial training and distillation has proven
to be a potent defense mechanism against ML/DL evasion attacks.
This research underscores the importance of continuously refining and
enhancing defense techniques to stay ahead of evolving adversarial
threats, ensuring the security and reliability of ML/DL models in real-
world applications.

6.1. Robustness metrics

There also exist some additional metrics that evaluate how robust
a model is by analyzing its parameters and outputs. Therefore, it is
relevant to analyze the state-of-the-art metrics in this sense to quantify
how the application of robustness techniques improved the model.

ART [52] includes the following metrics regarding model robust-
ness: Cross Lipschitz Extreme Value for nEtwork Robustness (CLEVER)
score [38], Loss sensitivity [40], and Empirical robustness [28]. Table 9
shows the values for these metrics using the test dataset as samples for
evaluation. Note that CLEVER score is a metric calculated per sample.
Therefore, the average and standard deviation are given in the table.

Although there is not a very great change on these metrics, and
even the results for CLEVER untargeted are worse in the adversarial
trained models than in the base model, it can be seen how in the case
of CLEVER targeted, the score rises 10% from 0.0218 to ≈0.024 in
both distilled models. Loss sensitivity score is increased from 5.1391 to
6.8399 and 6.7756 in the adversarial trained and adversarial trained
+distilled models, respectively. Finally, Empirical robustness is slightly
increased from 0.0616 to 0.0648 and 0.0639, a ≈5%.

While the improvements in robustness metrics might appear subtle,
they are indicative of the potential benefits that robustness techniques
can bring to the table. Especially in the realm of adversarial attacks,
even marginal enhancements in robustness can be crucial in thwarting
potential threats. This analysis underscores the importance of contin-
uously refining and employing robustness techniques, ensuring that
ML/DL models remain resilient in the face of evolving adversarial
challenges.

7. Discussion

This section articulates the constraints inherent to the proposed
solution and delivers key insights gleaned from the performed study.
Based on the set of experiments conducted in this work and after the
comparison with the literature, some important insights and conclu-
sions can be extracted as lessons learned but also as limitations. The
list of lessons learned is as follows:

• The use of raw data features provided better results for most of
the classification models, as compared to sliding-window features,
which contrasted with the previous works. This may occur be-
cause the LSTM-1DCNN model can use underlying correlations
and information in the raw data to learn more accurate patterns.
Another possible reason could be the use of a larger dataset that
also includes information about memory and storage.

• Temperature conditions did not excessively impact the device
identification performance. The average performance did not de-
grade when evaluating data generated under temperatures differ-
ent from the ones during training. However, for some devices, it
could lead to wrong identification if the TPR-based threshold is
defined at a high value.

• The initial device identification model was found vulnerable to
targeted adversarial evasion attacks, with over 0.85 ASR in some
cases. These attacks could potentially compromise the identifica-
tion solution by setting a threshold in the 0.50 TPR.

• The application of defense techniques, specifically adversarial
training and model distillation, improved the robustness of the
device identification model against ML/DL evasion attacks. The
model combining adversarial training and distillation offered the
best robustness against such attacks.

In contrast, the following limitations are observed and should be
addressed in future research in the area:

• While the device identification model performed well under the
context-based attack, some devices could still be more affected
by temperature variations, leading to potential misidentification
if a more impactful attack is performed. One way to address this
limitation is to collect data from a wider range of temperatures
during the training process.

• The model that combined adversarial training and distillation
had unstable behavior during model generation, requiring several
attempts to avoid gradient explosion issues. Such instability ne-
cessitated multiple attempts to generate a functioning model, sig-
nificantly escalating the resources and time required in the model
generation process. Furthermore, this instability could poten-
tially result in the generation of less accurate or less generalized
models.

• The degradation in performance on benign samples is a trade-
off that must be considered when using robustness techniques.
While adversarial training and model distillation improved the
robustness of the model, the performance metrics were slightly
degraded, with about a 0.02 performance decrease in accuracy,
and average precision, recall, and F1-Score.

• The robustness techniques may not be effective against all types
of evasion attacks. Untested attacks, such as GAN-based methods,
could have a high ASR if full access to the identification model is
available. Therefore, active iteration of the defense techniques is
necessary as attack methods evolve.

8. Conclusions and future work

The explosion in IoT device deployment has motivated the de-
velopment of new device identification solutions based on hardware
behavior and ML/DL processing. However, these solutions face adver-
sarial attacks that try to evade their functionality. This work explored
the performance of hardware behavior-based device identification. For
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that, the LwHBench dataset containing samples from 45 Raspberry Pi
devices running identical software images was used to train ML/DL
classifiers in charge of performing individual identification of each
device. A DL model combining LSTM and 1D-CNN layers offered the
best performance with an average F1-Score of 0.96, identifying all the
devices by setting a threshold in +0.80 TPR. This model improved
the performance of previous approaches in the literature. Afterward,
a temperature-based attack and nine ML/DL evasion attacks were exe-
cuted to measure the model performance degradation. In this case, the
baseline model was robust against temperature context changes. How-
ever, some ML/DL evasion attacks successfully fooled the identification
system, reaching up to 0.88 attack success rates and demonstrating its
vulnerability to these attacks. Finally, model distillation and adversarial
training defense techniques were applied during the model training,
improving the model resilience to the ML/DL evasion attacks. These
techniques improved the model robustness, being the combination of
adversarial training and model distillation the best defense approach.
Only a ≈0.02 decrease was noticed in accuracy, precision, recall, and
F1-Score metrics, without a decrease in the minimum TPR, which is the
metric used for setting the threshold for device identification.

In future work, more adversarial attack and defense techniques,
such as the ones based on generative models, will be applied to fully
improve the solution robustness. Besides, it is planned to add trust
metrics in the individual device identification framework, in-depth
evaluating the fairness and robustness of the predictions. Another re-
search perspective to be tested is the fully distributed model generation,
leveraging federated learning to avoid data sharing and centralization.
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The proliferation of the Internet of Things (IoT) has led to the emergence of crowdsensing applications, where 
a multitude of interconnected devices collaboratively collect and analyze data. Ensuring the authenticity and 
integrity of the data collected by these devices is crucial for reliable decision-making and maintaining trust 
in the system. Traditional authentication methods are often vulnerable to attacks or can be easily duplicated, 
posing challenges to securing crowdsensing applications. Besides, current solutions leveraging device behavior 
are mostly focused on device identification, which is a simpler task than authentication. To address these issues, 
an individual IoT device authentication framework based on hardware behavior fingerprinting and Transformer 
autoencoders is proposed in this work. To support the design, a threat model details the security problems faced 
when performing hardware-based authentication in IoT. This solution leverages the inherent imperfections and 
variations in IoT device hardware to differentiate between devices with identical specifications. By monitoring 
and analyzing the behavior of key hardware components, such as the CPU, GPU, RAM, and Storage on devices, 
unique fingerprints for each device are created. The performance samples are considered as time series data 
and used to train outlier detection transformer models, one per device and aiming to model its normal data 
distribution. Then, the framework is validated within a spectrum crowdsensing system leveraging Raspberry Pi 
devices. After a pool of experiments, the model from each device is able to individually authenticate it between 
the 45 devices employed for validation. An average True Positive Rate (TPR) of 0.74±0.13 and an average 
maximum False Positive Rate (FPR) of 0.06±0.09 demonstrate the effectiveness of this approach in enhancing 
authentication, security, and trust in crowdsensing applications.

1. Introduction

The widespread adoption of the Internet of Things (IoT) has led to 
the emergence of crowdsensing applications, where many IoT devices 
collaboratively gather and analyze data from the environment (Rajen-

dran et al., 2018). Many of these applications rely on single-board 
computers due to their reduced price and relatively good performance. 
These applications offer tremendous potential in diverse domains, such 
as environmental monitoring, urban planning, healthcare, and trans-

portation. However, ensuring the authenticity and integrity of the data 
collected by these devices is critical for reliable decision-making and 
maintaining trust in the system (Capponi et al., 2019).

* Corresponding author.

E-mail addresses: pedromiguel.sanchez@um.es (P.M. Sánchez Sánchez), huertas@ifi.uzh.ch (A. Huertas Celdrán), gerome.bovet@armasuisse.ch (G. Bovet), 
gregorio@um.es (G.M. Martínez Pérez).

The openness and distributed nature of crowdsensing systems make 
them susceptible to Sybil attacks and collusion among malicious enti-

ties (Yu, 2020). Sybil attacks involve adversaries creating multiple fake 
identities to gain control over the system or manipulate the collected 
data. Collusion among malicious entities can also lead to coordinated 
attacks or data manipulation. Implementing identity verification mech-

anisms, reputation systems, and distributed consensus algorithms is re-

quired in order to prevent and detect such attacks (Zhong et al., 2019).

Traditional authentication methods for IoT devices, such as crypto-

graphic protocols or unique identifiers, are often susceptible to various 
attacks and vulnerabilities (Wang et al., 2020). Moreover, devices with 
identical specifications can be easily duplicated or impersonated, posing 
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a significant challenge to maintaining trust and security in crowdsens-

ing applications. To address these limitations, novel approaches are 
required that leverage the unique characteristics of IoT devices to es-

tablish their authenticity. These methods can be seen as an additional 
layer in the authentication security of IoT scenarios.

One of the directions proposed in the literature to solve these is-
sues is leveraging hardware manufacturing imperfections in order to 
uniquely identify each device in the environment (Sánchez et al., 2021). 
What elevates the efficiency of this approach is the integration of 
Machine Learning (ML) and Deep Learning (DL) techniques for the 
processing of collected hardware behavior data. These cutting-edge 
computational methodologies facilitate the analysis, classification, and 
prediction of the enormous amounts of complex, high-dimensional data 
generated by IoT devices (Al-Garadi et al., 2020). Particularly, they can 
adeptly capture patterns and dependencies in this data, enabling effec-

tive anomaly detection and thereby facilitating the identification of de-

vices or activities that deviate from established norms. The combination 
of hardware manufacturing imperfections and ML/DL techniques has 
been evidenced to provide remarkable results in the context of device 
identification (Sanchez-Rola et al., 2018; Sánchez et al., 2023b). How-

ever, authentication poses a more complex issue: discerning whether 
a device is authentic or not, but without taking into account the data 
distributions of other devices.

Therefore, there are still many challenges present related to 
hardware-based individual authentication leveraging ML/DL tech-

niques: (i) most of the solutions available in the literature cover device 
identification and not in authentication (Sánchez et al., 2023c), try-

ing to differentiate a device between a set of known devices instead 
of uniquely verify its identity; (ii) novel DL methods such as attention 
Transformers have not been applied yet in this field (Sánchez et al., 
2022), but could improve current results as it is happening in other 
fields; (iii) solutions are usually implemented in simulated or isolated 
environments, and not integrated into real-world applications (Zhang 
et al., 2019); (iv) most of the solutions relying on ML/DL follow a 
classification-based approach as they focus on identification, which is 
not practical in dynamic scenarios or when the number of devices is 
high (Al-Naji and Zagrouba, 2022).

To solve the previous challenges, the main contributions of the 
present work are:

• A framework that leverages Transformer-based autoencoder mod-

els and hardware performance fingerprinting for the individual 
authentication of single-board computer devices. This framework 
leverages CPU, GPU, RAM and Storage components to measure 
their performance and find manufacturing variations that enable 
the differentiation between devices based on their performance. In 
this sense, the data from the legitimate device are taken as normal 
samples modeling its performance distribution, while samples from 
other devices should be detected as outliers or anomalies.

• The deployment of the framework in a real-world spectrum crowd-

sensing platform based on Raspberry Pi devices, namely Elec-

troSense. In total, 45 devices are utilized in the scenario: 15 Rasp-

berry Pi 4, 10 Raspberry Pi 3, 10 Raspberry Pi 1, and 10 Raspberry 
Pi Zero. This deployment demonstrates the practical applicability 
of the framework and its compatibility with different versions of 
Raspberry Pi devices. It also provides valuable insights into the 
real-world challenges and considerations in implementing such a 
sophisticated authentication system, contributing to the broader 
field of IoT security.

• The validation of the framework authentication performance in the 
deployed scenario. After data collection, an average True Positive 
Rate (TPR) of 0.74±0.13 and an average maximum False Positive 
Rate (FPR) of 0.06±0.09 are achieved, improving other state-of-

the-art models such as LSTM and 1D-CNN networks. This validation 
not only confirms the effectiveness of the proposed framework but 
also sets a new benchmark in the field. Besides, a second validation 

approach details how the solution can be adapted to new device 
models with different hardware components. The detailed analy-

sis and comparison with other models provide a comprehensive 
understanding of the strengths and potential areas for further op-

timization, paving the way for future research and development 
in hardware-based authentication. The validation code for the per-

formed experiments is available at Sánchez Sánchez (2023).

The remainder of this article is structured as follows. Section 2 gives 
an overview of hardware-based individual authentication and back-

ground on transformer usage for anomaly detection. Section 3 explains 
the threat model faced by the proposed solution. Section 4 describes 
the Transformer and hardware-based device fingerprinting solution for 
individual authentication of single-board devices. Section 5 gives an 
overview of the crowdsensing platform employed for validation, the 
data collection process, and the experimental results when performing 
the authentication. Finally, Section 7 gives an overview of the conclu-

sions extracted from the present work and future research directions.

2. Related work

This section reviews the key literature relevant on individual de-

vice authentication through hardware performance fingerprinting and 
transformer-based anomaly detection.

2.1. Individual device authentication and identification

The present work focuses on hardware-based single-board device 
authentication using the performance behavior of the components self-

contained in the device and anomaly detection DL algorithms. Arafin 
and Qu (2021) discussed several examples of hardware-based authen-

tication that use memory access latency, instruction execution latency, 
and clock skew to authenticate devices, users, and broadcast signals 
used for navigation. In Sánchez et al. (2023b), the authors compared 
the deviation between the CPU and GPU cycle counters in Raspberry Pi 
devices to perform individual identification of 25 devices. The identifi-

cation was performed using XGBoost, achieving a 91.92% True Positive 
Rate (TPR). In continuing work (Sánchez et al., 2022), the same authors 
improved the results to an average F1-Score of +0.96 and a minimum 
TPR of 0.8 using a time series classification approach based on LSTM 
and 1D-CNN combination. Similarly, (Laor et al., 2022) performed 
identical device identification using GPU performance behavior and 
ML/DL classification algorithms. Accuracy between 95.8% and 32.7% 
was achieved in nine sets of identical devices, including computers and 
mobile devices. Sanchez-Rola et al. (2018) identified +260 identical 
computers by measuring the differences in code execution performance. 
They employed the Real-Time Clock (RTC), which includes its own 
physical oscillator, to find slight variations in the performance of each 
CPU. In Salo (2007), the author compared the drift between the CPU 
time counter, the RTC chip, and the sound card Digital Signal Processor 
(DSP) to identify identical computers. Other works have also explored 
hardware-based authentication applications using physical properties 
of computing hardware such as main memory, computing units, and 
clocks. Shrivastava et al. (2022) proposed a high-performance Field Pro-

grammable Gate Arrays (FPGA) based secured hardware model for IoT 
devices using the Advanced Encryption Standard (AES) algorithm. They 
compared the performance of two FPGAs and found that the Spartan-6 
FPGA provides better throughput and less time delay for IoT devices.

Other works have explored the usage of Physical Unclonable Func-

tions (PUFs) for IoT device identification (Shamsoshoara et al., 2020). 
However, PUFs are out of the scope of this work, as it is centered on 
hardware behavior fingerprinting based on device performance, avoid-

ing the usage of new hardware elements or the modification of the 
device specifications.

Finally, some solutions are also available in the industry, leverag-

ing hardware characteristics for IoT device identification. Numerous 
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Table 1

Comparison of the closest works on ML/DL-focused hardware-based device identification and authentication.

Work Scenario Approach Algorithm/Model N Devices Results

(Salo, 2007) Computer identification Statistical 
correlation

Pair-based 
identification

38 Computer identification based on the comparison of 
three physical oscillators using t-test statistic

(Sanchez-Rola et al., 2018) Computer identification Statistical 
correlation

Mode-based 
statistics

265 All computers uniquely identified. No effect from 
CPU load and temperature

(Laor et al., 2022) Computer and mobile 
identification

Classification CNN 9 95.8% and 32.7% accuracy in nine sets of identical 
devices. Accuracy drops with device rebooting

(Sánchez et al., 2023b) IoT device identification Classification XGBoost 25 91.92% average TPR. No effects from temperature 
changes and device rebooting

(Sánchez et al., 2022) IoT device identification Classification LSTM + 1D-CNN 45 0.96 average F1-Score. Resilience to temperature and 
ML/DL evasion attacks.

This work (2023) IoT device authentication Anomaly 
Detection

Transformer 45 All devices authenticated. 0.74 average TPR and 0.06 
average maximum FPR

hardware-based authentication solutions for IoT devices have been in-

troduced to enhance security. Intel Enhanced Privacy ID (EPID) pro-

vides a mechanism for device authentication while ensuring privacy, 
making certain that devices connecting to networks are genuine Intel 
products (Intel, 2021). ARM TrustZone technology partitions devices 
into secure and non-secure zones, offering a foundational layer for 
security solutions (ARM, 2021). Cisco Trust Anchor module (TAm) em-

beds a hardware module in products to guarantee device integrity and 
authenticity right from manufacturing to deployment (Cisco, 2021). 
Microsoft has ventured into this space with Azure Sphere, which in-

corporates custom silicon security technology for comprehensive IoT 
security (Microsoft, 2021). NXP A71CH is a secure element designed 
to provide a root of trust at the integrated circuit level for IoT de-

vices (NXP, 2021). Infineon OPTIGA Trusted Platform Module (TPM) 
offers hardware-based security functions, facilitating device authenti-

cation (Infineon, 2021). Microchip CryptoAuthentication devices are 
tailored to protect against various security threats by offering robust 
cryptographic solutions (Microchip, 2021). Rambus CryptoManager IoT 
Device Management is a turnkey solution designed to provide end-

to-end security, including device attestation and hardware-based secu-

rity (Rambus, 2021). Lastly, GlobalPlatform Device Trust Architecture 
(DTA) standardizes the use of secure components in IoT devices to pro-

tect digital services and data (GlobalPlatform, 2021). While hardware-

based industrial authentication solutions for IoT devices bolster secu-

rity, they come with challenges. These include higher costs, increased 
deployment complexity, computational overhead on devices, reduced 
flexibility for updates, scalability concerns in vast networks, vulnerabil-

ities to physical attacks, supply chain integrity issues, interoperability 
problems among different manufacturers, potential long-term hardware 
degradation affecting performance, and the risk of vendor lock-in due 
to proprietary solutions.

Table 1 compares the closest works in the literature with the present 
one. Although several works have worked in the combination of ML/DL 
techniques and hardware fingerprinting for device identification, a no-

table gap persists in the literature with respect to addressing the unique 
challenges of device authentication via an anomaly detection approach. 
Contemporary studies have primarily employed classification models, 
which serve to identify devices from a set pool of labels. However, these 
models are inadequate for the authentication problem. The task of au-

thentication involves more than simple device recognition - it requires 
a system capable of detecting deviations from an expected hardware 
behavior, a task for which anomaly detection models, rather than tradi-

tional classification models, are better suited. Consequently, there is a 
significant need to investigate the potential of DL-based anomaly de-

tection models, such as Transformer models, in the realm of device 
authentication.

2.2. Transformer-based anomaly detection in IoT security

The application of Transformer models in anomaly detection has re-

cently gained momentum, recognizing their ability to extract meaning-

ful features from sequential data effectively. Anomaly detection in time-

series data, in particular, has seen significant advancements through the 
adoption of Transformer models (Choi et al., 2021). Their proficiency in 
capturing temporal dynamics makes them an excellent choice for tasks 
that involve detecting irregularities in time-bound sequences (Tuli et 
al., 2022).

In the field of IoT security, Transformer-based autoencoders have 
been employed to address high-dimensional and complex dependencies 
issues by leveraging the self-attention mechanism and the encoder-

decoder architecture. Chen et al. (2021) proposed a framework called 
GTA that learns a graph structure among sensors and applies graph 
convolution and Transformer-based modeling to detect anomalies in 
multivariate time series. Kozik et al. (2021) proposed a hybrid time win-

dow embedding method with a Transformer-based classifier to identify 
compromised devices in IoT-networked environment. Tuli et al. (2022)

proposed TranAD, a deep Transformer network that uses attention-

based sequence encoders to perform anomaly detection and diagnosis 
for IoT data streams. These works demonstrate the effectiveness and 
efficiency of Transformer-based models for anomaly detection in IoT 
security.

However, the performance of Transformer-based anomaly detection 
in individual device authentication has not been explored yet, remain-

ing as a practical field where the performance of these novel models 
can improve the state-of-the-art approaches.

3. Threat model

The primary concern in the single-board device authentication sce-

nario is an adversarial actor attempting to integrate an unauthorized 
device into a sensitive setting, like an industry, by masquerading as or 
impersonating a legitimate device. This threat can be approached from 
multiple angles:

• TH1. Device impersonation (Marabissi et al., 2022). The foremost se-

curity challenge is when an adversarial entity substitutes a genuine 
device with a malicious device that mirrors its software charac-

teristics. In this case, the adversary deploys identical legitimate 
software credentials but incorporates malevolent processes and fea-

tures.

• TH2. Sybil (Rajan et al., 2017). A singular device (or multiple) 
might attempt to create numerous authentications to transmit de-

ceptive data from many mimicked devices. The vulnerability of 
a system to Sybil attacks hinges on (i) the simplicity of creating 
authentications; (ii) whether the system uniformly handles all en-

tities, and (iii) the extent to which the system approves of entities 
lacking a trust linkage to a recognized trustworthy entity.
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Fig. 1. Individual device authentication framework. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

• TH3. Replay Attacks (Feng et al., 2017). Attackers can capture 
authentication tokens or messages and replay them later to gain 
unauthorized access or to disrupt the network operations.

• TH4. Physical Attacks (Stellios et al., 2021). Many IoT devices are 
deployed in environments that lack stringent security, leaving them 
vulnerable to physical tampering. Malicious actors can directly ac-

cess these devices to extract sensitive cryptographic keys or implant 
malicious hardware/software components. The direct physical ac-

cess grants attackers a high level of control, making these attacks 
particularly devastating.

• TH5. Advanced persistent threat (Chen et al., 2022). This threat 
emerges as an outcome of the preceding one. A rogue device set 
up in the environment may be capable of extracting data from the 
situation and other devices or initiating more aggressive assaults 
like vulnerability scanning and/or Denial of Service (DoS) attacks. 
Additionally, contemporary attacks typically incorporate evasion 
methods that conceal their operations from software-centric behav-

ior observation security mechanisms (Li and Li, 2020).

Traditional software-based authentication methods, while effective 
in some scenarios, have shown vulnerabilities in the face of sophisti-

cated threat models where certificates or software identifiers can be 
cloned. Therefore, solving the previous threat model is the main objec-

tive of the proposed solution, complementing traditional authentication 
systems based on software. By capitalizing on inherent cycle skew and 
performance disparities in hardware -even among identical IoT devices-

this approach can establish a unique, tamper-resistant identity for each 
device. These intrinsic hardware traits offer not just a shield against 
software-based incursions but also a robust defense against physical in-

trusions. Additionally, by folding hardware performance metrics into 
the authentication matrix, the solution can seamlessly cater to the di-

verse performance spectra of IoT devices, facilitating efficient authenti-

cation processes, even for those with resource constraints.

In order to solve the threats identified in this work, it is assumed 
that even if the device is malicious, the control over it is maintained 
by its legitimate administrator and the authentication tasks can be exe-

cuted. This condition guarantees that device management is maintained 
during a possible attack. If this control is lost, it would be assumed that 
the device is infected or has some error.

4. Individual device authentication framework

This section elucidates the DL framework implemented for the pur-

pose of hardware performance fingerprinting. The framework performs 
device fingerprinting based on performance deviations that show hard-

ware manufacturing imperfections. An autoencoder Transformer model, 
a state-of-the-art approach in DL-based time series processing, is lever-

aged for the authentication of individual devices.

The framework is designed in a modular manner, where different 
components are combined in a stacked layout, from the hardware be-

havior monitoring to the DL-based evaluation and authentication. Due 
to the reduced processing capabilities of single-board computers, the 
framework follows a client-server architecture, where the components 
related to data collection and device configuration are deployed locally 
in the device, and the server processes the data and performs the model 
training and evaluation. Fig. 1 illustrates the different modules com-

posing the framework and the pipeline followed by the data until an 
authentication decision is made. Five modules compose the framework: 
(i) Monitoring, (ii) Preprocessing, (iii) Anomaly Detection, (iv) Authen-

tication, and (v) Device Security.

4.1. Monitoring module

The Monitoring Module is in charge of the interaction with the hard-

ware components and the monitoring of their performance. Besides, it 
sends the collected data to the server for its processing and evaluation. 
It contains two components: Component Isolation and Stability and Data 
Gathering.

4.1.1. Component isolation and stability

One of the key conditions to perform fingerprinting based on hard-

ware performance is to ensure that the components selected for mon-

itoring are running under stable conditions that enable the character-

ization of the small performance variations in the components due to 
manufacturing imperfections (Sánchez et al., 2023b). Therefore, this 
component is in charge of configuring the CPU, GPU, RAM and SD Card, 
the selected hardware components. It sets fixed running frequency for 
the components, isolate the components to avoid kernel interruptions, 
and disables some component optimizations that might affect the sta-

bility of the performance, such as memory address randomization.

4.1.2. Data gathering

This component is in charge of collecting the performance measure-

ments by executing different tasks in the selected hardware compo-

nents. In the case of single-board computers, the available hardware 
elements are the CPU, GPU, RAM and storage (typically SD card). As 
proposed in the literature (Sánchez et al., 2023b), the hardware mon-

itoring is done by using the in-device elements as a reference for the 
performance measurements. For example, GPU performance is mea-

sured in CPU cycles, and CPU performance when executing a code is 
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measured using the elapsed GPU cycles. The reasoning for this approach 
is that the component itself is not able to measure the deviations in its 
performance specification without an external cycle or time counter.

4.2. Preprocessing module

The Preprocessing Module plays the pivotal role of a bridge between 
the raw data gathered by the Monitoring Module and the Anomaly Detec-

tion Module, where the data is employed to train the DL models and 
evaluate the device. The main tasks of this module encompass data 
cleaning and feature generation.

4.2.1. Data cleaning

This component is responsible for filtering and cleaning the raw 
performance metrics. Any missing, inconsistent, or erroneous data are 
identified and filtered, thus preparing the dataset for further processing.

4.2.2. Feature generation

This component focuses on feature extraction and engineering based 
on the cleaned data. First, it performs normalization of each one of the 
metrics gathered. Afterward, it is in charge of transforming the raw data 
into a format suitable for the Transformer model. A key aspect of this 
process is the concatenation of samples into groups of vectors, which 
facilitates time series-based analysis.

4.3. Anomaly detection module

The Anomaly Detection Module is the heart of the authentication 
framework, tasked with training and evaluating the Transformer-based 
autoencoder model. The Transformer-based autoencoder is a variant 
of the Transformer model, which was originally proposed for natural 
language processing tasks. The key component of the Transformer archi-

tecture is the self-attention mechanism, which models the interactions 
between the elements in the input sequence (Vaswani et al., 2017). 
More in detail, the self-attention mechanism computes a weighted sum 
of the input elements for each position in the sequence. The weight 
assigned to each input element is determined by its relevance to the po-

sition being considered. Formally, the self-attention can be computed 
as follows:

Attention(𝑄,𝐾,𝑉 ) = softmax

(
𝑄𝐾𝑇
√
𝑑𝑘

)
𝑉 (1)

where 𝑄, 𝐾 , and 𝑉 are matrices representing the queries, keys, and 
values, respectively, and 𝑑𝑘 is the dimensionality of the keys. In multi-

head attention, this operation is done ℎ times with different learned 
linear projections of the original 𝑄, 𝐾 , and 𝑉 matrices.

In the autoencoder variant of the Transformer model, the same se-

quence is provided as both the input and the target output of the 
model. The Transformer-based autoencoder learns to reconstruct the 
input sequence, which allows it to capture the underlying structure of 
the sequence data.

The encoder and decoder are both composed of several identical 
layers. Each layer contains two sub-layers: a multi-head self-attention 
mechanism and a position-wise fully connected feed-forward network, 
using ReLU as activation function. The output of each sub-layer is then 
passed through a residual connection and layer normalization.

In the context of device authentication, the Transformer-based au-

toencoder is trained to reconstruct the normal behavior of each device. 
Once the model is trained, it can be used to detect anomalies by com-

paring the reconstruction error of a new sequence with a predefined 
threshold. A high reconstruction error indicates that the new sequence 
is significantly different from the normal behavior, which could suggest 
a possible intrusion.

The two components forming this module, in charge of the Trans-

former-based autoencoder training for each device, are:

4.3.1. Transformer training and optimization

This component takes the processed data and trains a Transformer 
model for each device. This model, adept at reconstructing input data, 
establishes a profile of standard device behavior, thereby becoming pro-

ficient at detecting anomalies or deviations from the norm. This phase 
also involves the optimization of model parameters for each device in-

dependently to ensure the best performance. Then, the best model for 
each device is stored to be later used. The training and optimization pro-

cess is iterative and may require several exploratory iterations to find 
the combination that meets all the properties needed in the generated 
fingerprint.

4.3.2. Transformer evaluation

Upon completion of the training phase, the model is subject to de-

ployment for live data evaluation. The model predictive capability is 
tested against the values collected from the device after deployment. 
Then, the output of the Transformer will be employed in the Authenti-

cation Module to determine if a device is the legitimate one and grant 
allow him to remain deployed in the network. Any deviations from the 
established profile may trigger further investigation or immediate ac-

tion, depending on the Device Security Module.

4.4. Authentication module

The Authentication Module makes the final decision regarding device 
authentication based on the evaluation results coming from the pre-

vious module. It integrates the anomaly detection results with other 
contextual information, such as device history or network behavior, to 
make a more informed decision. This module may also include addi-

tional verification steps or multi-factor authentication to enhance secu-

rity.

4.4.1. Device authentication

This component is charged with the essential task of making the 
final authentication decision based on the anomaly detection results. 
Anomalies, interpreted as potential indications of device tampering or 
misuse, inform the authentication decision. A device may be authenti-

cated and granted network access, or it may be rejected, depending on 
the analysis of these anomalies.

4.5. Device security module

The Device Security Module serves as an additional layer of security, 
overseeing the enforcement of security measures. It works in conjunc-

tion with the Authentication Module to provide a comprehensive security 
solution for IoT devices after authentication.

4.5.1. Security enforcement

This component ensures the enforcement of necessary security rules 
or protocols based on the Authentication Module decision. If a device is 
authenticated, it is granted access to the network. If a device is deemed 
unauthenticated, this component ensures the device is isolated from the 
network, safeguarding the integrity of the IoT system. This module also 
reports any security issues, such as repeated authentication failures, to a 
central authority for further investigation. Moving target defense (MTD) 
techniques are a suitable approach for this module, as they focus on 
changing the device configuration according to the mitigation actions 
required. Some examples of these techniques is the removal of files, 
dynamic network connection filtering, among others.

5. Framework validation

This section succinctly lays out the overall validation methodology, 
from leveraging the ElectroSense spectrum crowdsensing platform to 
data collection and preprocessing crucial for the analysis. The specifics 
of data gathering and the processes of cleaning, normalization, and 
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Fig. 2. ElectroSense crowdsensing platform diagram.

transformation are explained. Finally, the Transformer-based Anomaly 
Detection model approach is validated in this real-world scenario, mea-

suring its effectiveness. Note that the validation focuses on the data 
collection, monitoring, and DL parts of the framework. The develop-

ment of advanced authentication rules and security measures is out of 
the scope of this work.

5.1. ElectroSense spectrum crowdsensing platform

The IoT spectrum sensors utilized in this research are a part of the 
ElectroSense network (Rajendran et al., 2018), an open-source, crowd-

sensing platform that collects radio frequency spectrum data with the 
aid of low-cost sensors. The platform, which capitalizes on a collabora-

tive crowdsensing approach, enables the monitoring and collection of 
spectrum data. The core of this platform is the Raspberry Pi, a com-

pact and cost-effective single-board computer, that when attached to 
software-defined radio kits and antennas can function as a versatile 
spectrum sensor. Such assembly of spectrum sensors by individual users 
contributes to the broad reach and comprehensive data collection capa-

bility of the ElectroSense platform.

Once the sensors have collected the data, it is then sent to the 
ElectroSense backend platform, which is responsible for its storage, pro-

cessing, and analysis. This meticulous processing and analysis facilitate 
the provision of a suite of services. These services extend beyond mere 
spectrum occupancy monitoring, delving into areas such as transmission 
optimization and decoding. This range of services provided by Elec-

troSense not only bolsters the understanding of spectrum utilization but 
also opens up avenues for innovative optimization and enhancement 
strategies in the field of IoT. Fig. 2 depicts a diagram of the ElectroSense 
platform.

For validation, numerous Raspberry Pi devices from different models 
are deployed in the crowdsensing platform in order to validate the pro-

posed authentication framework. More in detail, the devices deployed 
are 15 Raspberry Pi 4 Model B, 10 Raspberry Pi 3 Model B+, 10 Rasp-

berry Pi Model +, and 10 Raspberry Pi Zero.

5.2. Data gathering and preprocessing

The first step in the validation process is to obtain the hardware 
performance data from each device and preprocess it in order to be fed 
into the Transformer models.

5.2.1. Data gathering

The assembly of individual device authentication premised on hard-

ware behavior hinges on the ability to monitor imperfections inherent 
in the device chips for subsequent evaluation. As outlined in Section 2, 
previous studies have primarily tackled this task by contrasting com-

ponents featuring different base frequencies or crystal oscillators since 
deviations in these components performance can be discerned directly 
from the device.

Table 2

LwHBench dataset features (Sánchez et al., 2023a).

Component Function Feature Under Observation

- timestamp Unix timestamp

temperature Core temperature of the device

CPU 1 s sleep Elapsed GPU cycles during 1s of CPU sleep

2 s sleep Elapsed GPU cycles during 2s of CPU sleep

5 s sleep Elapsed GPU cycles during 5s of CPU sleep

10 s sleep Elapsed GPU cycles during 10s of CPU sleep

120 s sleep Elapsed GPU cycles during 120s of CPU sleep

string hash Elapsed GPU cycles during computation of a 
fixed string hash

pseudo random Elapsed GPU cycles while generating a 
software pseudo-random number

urandom Elapsed GPU cycles while generating 100 MB 
using /dev/urandom interface

fib Elapsed GPU cycles while calculating the 20th 
Fibonacci number using the CPU

GPU matrix mul Time taken by CPU to execute a GPU-based 
matrix multiplication

matrix sum Time taken by CPU to execute a GPU-based 
matrix summation

scopy Time taken by CPU to execute a GPU-based 
graph shadow processing

Memory list creation Time taken by CPU to generate a list with 
1000 elements

mem reserve Time taken by CPU to fill 100 MB in memory

csv read Time taken by CPU to read a 500 kB csv file

Storage read x100 100 measurements of CPU time for 100 kB 
storage read operations

write x100 100 measurements of CPU time for 100 kB 
storage write operations

To construct the framework for individual device authentication, it 
was necessary to compile a dataset that utilizes metrics pertinent to the 
hardware components inherent in certain devices. This dataset has been 
christened LwHbench, and additional details can be found in Sánchez 
et al. (2023a). In this context, the dataset gathered performance metrics 
from the CPU, GPU, Memory, and Storage of 45 Raspberry Pi devices 
of diverse models over a span of 100 days. Various functions were 
executed in these components, employing other hardware elements (op-

erating at differing frequencies) to measure performance. Table 2 pro-

vides a summary of the functions that were monitored. These functions 
embody a set of common operations carried out in every component, 
aiming to gauge their performance. It is worth mentioning that addi-

tional analogous operations could be utilized during the data gathering 
process. In total, 215 features formed each one of the collected data 
vectors.

The final dataset contains the following samples per device model: 
505584 samples collected from 10 RPi 1B+ devices, 784095 samples 
from 15 RPi4 devices, 547800 samples from 10 RPi3 devices, and 
548647 samples from 10 RPiZero devices. To collect the data, an array 
of countermeasures were implemented to mitigate the effect of noise 
introduced by other processes operating in the devices: Component fre-

quency was kept constant, kernel level priority was enforced, the code 
was executed in an isolated CPU core (in multi-core devices), and mem-

ory address randomization was disabled. Moreover, the dataset was 
compiled under a variety of temperature conditions, facilitating the 
analysis of the influence this environmental feature has on component 
performance.

5.2.2. Preprocessing

In the preprocessing stage, the time series were generated by ap-

plying a time window over the collected samples, combining them into 
groups of 10 to 100 vectors. This method of grouping facilitates the 
implementation of time series Deep Learning (DL) approaches and is 
adjusted to other literature works (Sánchez et al., 2022). These models 
possess the ability to uncover intricate trends within the data, poten-

tially leading to superior results compared to the standalone processing 
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Table 3

Anomaly detection time series models and hyperparameters tested.

Model Hyperparameters

General 
Parameters

𝑒𝑝𝑜𝑐ℎ𝑠 = [10, 20, 50], 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 = [32, 128, 256, 512]

1D-CNN 𝑓𝑖𝑙𝑡𝑒𝑟𝑠 = [16, 32, 64, 128], 𝑘𝑒𝑟𝑛𝑒𝑙_𝑠𝑖𝑧𝑒 = [3, 5, 7], 
𝑛_𝑙𝑎𝑦𝑒𝑟𝑠 = [1, 2, 3]

LSTM 𝑛𝑒𝑢𝑟𝑜𝑛𝑠 = [10, 100], 𝑛_𝑙𝑎𝑦𝑒𝑟𝑠 = [1, 2, 3],
LSTM_1D-CNN 𝑖𝑛𝑝𝑢𝑡_𝑙𝑎𝑦𝑒𝑟𝑠 = [2, 3], 𝑐𝑛𝑛_𝑓𝑖𝑙𝑡𝑒𝑟𝑠 = [16, 32, 64, 128], 

𝑐𝑛𝑛_𝑘𝑒𝑟𝑛𝑒𝑙_𝑠𝑖𝑧𝑒 = [3, 5, 7], 𝑙𝑠𝑡𝑚_𝑛𝑒𝑢𝑟𝑜𝑛𝑠 = [10, 100]
𝑛_𝑙𝑎𝑦𝑒𝑟𝑠 = [1, 2, 3]

Transformer 𝑑𝑓𝑓 = [32, 64, 128, 256, 1024], 𝑛𝑢𝑚_𝑙𝑎𝑦𝑒𝑟𝑠 = [1, 2, 3]

and evaluation of individual samples. Moreover, it also permits the 
utilization of attention models such as Transformers, which currently 
represent the pinnacle of performance in this field. For data normal-

ization, QuantileTransformer (Ahsan et al., 2021) was utilized, given 
the variable data distributions originating from the differing hardware 
capabilities of each device model. The division of the data for model 
training and validation purposes consisted of 70% and 10% of the total, 
leaving the remaining 20% for testing. In order to minimize the poten-

tial impact of vector order correlations on the results, the splitting of 
training, validation, and test sets was performed without shuffling the 
samples.

5.3. Transformer-based anomaly detection validation

As detailed in Section 4, the proposed Transformer approach per-

forms hyperparameter tuning personalized for each device. Besides, 
other state-of-the-art DL architectures for anomaly detection in time 
series are tested to compare their performance to the Transformer. The 
tested networks are LSTM, 1D-CNN, and a combination of both of these 
layouts. Table 3 provides a comprehensive overview of the examined 
algorithms along with their corresponding hyperparameters. For vali-

dation, a server equipped with AMD EPYC 7742 CPU, NVIDIA A100 
GPU, and 180 GB of RAM is employed, and the models are implemented 
using Keras library.

In the case of the LSTM and 1D-CNN models, the time series concate-

nation only achieved good results when using groups of 10 vectors or 
smaller due to their limited memory capabilities. In contrast, the Trans-

former achieved good results with all the sliding window lengths from 
5 to 100, with the best results obtained with 100 vectors per sliding 
window.

To set the anomaly detection threshold in the reconstruction of the 
samples fed to the autoencoder models, the 10% of the reconstruc-

tion error in the training samples is chosen as the boundary between 
anomaly and normal sample. Then, the validation set is employed for 
the hyperparameter selection by choosing the model with the higher 
TPR.

5.3.1. Authentication performance

For the authentication capabilities evaluation, the strategy followed 
is one-vs-all, where the trained transformer model evaluates the test set 
of the source device (normal samples) but also the test sets of the rest of 
the devices (anomalies or outliers). Then, the True Positive Rate (TPR) 
of the legitimate device is compared with all the False Positive Rates 
(FPRs) of the rest of the devices, checking that the TPR value is greater 
than all the FPRs. Note that for this approach, different data normaliza-

tions should be performed in the test sets depending on which device is 
employed for training as the training data distribution changes.

Table 4 shows the results of the one-vs-all authentication tests. It can 
be seen how only the Transformer-based approach is able to authenti-

cate all the devices successfully. Although their average TPR is higher, 
LSTM and 1D-CNN networks only can identify some of the devices, of-

fering a much lower difference between the average TPR and maximum 

Table 4

Anomaly detection time series models results.

Model Best window 
size

Devices 
Authenticated

Avg. TPR Avg. Max. 
FPR

1D-CNN 10 32 0.88±0.06 0.67±0.29

LSTM 10 38 0.85±0.09 0.53±0.19

LSTM_1D-CNN 10 35 0.88±0.08 0.59±0.22

Transformer 100 45 0.74±0.13 0.06±0.09

Fig. 3. TPR and maximum FPR distributions of the Transformer autoencoder.

FPR. This occurs because the FPR is much more variable in these mod-

els, and many models have a high FPR when evaluating data from other 
devices, while the FPR variability is smaller in the Transformer models.

Fig. 3 gives a closer look into the distributions of the TPRs and 
maximum FPRs of the 45 devices evaluated. It can be seen that both 
distributions are greatly separated, having only three cases where the 
maximum FPR goes over 0.20 and remains under 0.45. The TPR always 
stays over that value and reaches values close to 1 in some cases, having 
most of its values between 0.6 and 0.8. Besides, Fig. 4 shows the exact 
TPR and maximum FPR values for each one of the devices evaluated, 
having its MAC address as an identifier. In this graph can be observed 
that in the cases where the maximum FPR has a relatively high value 
(0.2 to 0.4), the TPR is way higher, guaranteeing that the authentica-

tion can be made reliably.

According to these results, a threshold-based authentication ap-

proach could be employed by the Authentication Module to determine 
the result of the authentication process. An example can be a thresh-

old for each device with a value 0.1 lower than the TPR achieved in the 
validation, as it is enough to differentiate all the devices present in the 
deployment.

The results achieved by the anomaly detection validation have 
demonstrated the feasibility of the proposed framework, as it was 
able to uniquely authenticate 45 single-board devices with identical 
hardware and software specifications. These findings point towards a 
promising direction for individual device authentication premised on 
hardware behavior, demonstrating the potential of Transformer models 
in this sphere.

5.3.2. Resource usage

Although performance is the key characteristic to decide which 
model to use in the validation setup, resource usage during training 
and evaluation is also a critical point that should be taken into account 
when developing ML/DL-based solutions.

Table 5 shows the time and memory employed by the model. The 
training time statistics were collected using 10 epochs as the number 
of iterations over the training dataset. Besides, the evaluation time was 
obtained while evaluating the entire test dataset of the device. Finally, 
memory usage represents the size of the model after it has been com-

pletely trained.
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Fig. 4. Transformer autoencoder TPR and maximum FPR comparison per device.

Table 5

Resource usage of each model (per device).

Model Training Time Evaluation Time Memory

1D-CNN ≈47.79 s ≈1.44 s 0.86 MB

LSTM ≈283.68 s ≈2.11 s 1.33 MB

LSTM_1D-CNN ≈306.92 s ≈2.45 s 1.83 MB

Transformer ≈157.68 ≈8.93 s 7.77 MB

Each model demonstrates distinct computational characteristics in 
terms of training time, evaluation time, and memory usage. The 1D-

CNN model stands out as the most efficient, boasting the fastest training 
time of approximately 47.79 seconds and the quickest evaluation time 
of around 1.44 seconds. Additionally, it consumes the least amount of 
memory, using only about 0.86 MB. This combination of speed and ef-

ficiency makes it an appealing choice for resource-limited applications.

However, the LSTM model presents a significant increase in training 
time, taking approximately 283.68 seconds, and a slightly longer eval-

uation time of roughly 2.11 seconds. Coupled with a higher memory 
footprint of 1.33 MB, this model may demand greater computational 
resources than the 1D-CNN.

Interestingly, the hybrid LSTM+1D-CNN model exhibits the highest 
training time among the models, approximately 306.92 seconds, and 
has a considerable evaluation time of about 2.45 seconds. Its memory 
usage is also higher, at 1.83 MB, reflecting the complexity inherent to 
the combination of LSTM and 1D-CNN architectures.

Lastly, the Transformer model demonstrates a more moderate train-

ing time of approximately 157.68 seconds, albeit with the longest eval-

uation time of all models, around 8.93 seconds. More notably, it has 
a significantly higher memory usage, at a substantial 7.77 MB. While 
this may limit its applicability in memory-constrained environments, 
the Transformer model may excel in terms of capturing complex data 
patterns or delivering superior model accuracy, which are aspects not 
directly portrayed in the provided table.

In conclusion, while the 1D-CNN model is undeniably efficient re-

garding speed and memory usage, the Transformer models might offer 
better performance under certain circumstances. These trade-offs be-

tween time, memory usage, and potential model accuracy ought to be 
taken into account when deciding on the most suitable model for a par-

ticular scenario.

5.4. Additional validation in a simulated IoT deployment

Although the solution has already been validated in a real-world 
ElectroSense deployment, some additional challenges arise when adapt-

ing the framework to further scenarios. One of these challenges appears 
when new hardware models are present and hardware performance 
samples have to be collected from them. In this sense, gathering cy-

cle counters from the device components is dependent on the exact 
hardware component, and the procedure might vary, requiring code 
adaptations in the data gathering process.

ElectroSense is only compatible with Raspberry Pi hardware. Then, 
to explore this problem, an agriculture IoT scenario was simulated using 
nine additional devices from three new hardware models. Concretely, 
the list of devices employed was: 3 Rock64 devices, 3 RockPro64 de-

vices, and 3 Orange Pi 2 Lite devices.

The first step in the deployment process was to adapt the CPU and 
GPU cycle collection in the data gathering in order to be able to obtain 
the metrics described in Table 2. As the GPUs in these devices come 
from ARM Mali family, new counters should be leveraged. Concretely, 
the counter labeled as GPU_ACTIVE was chosen from the available op-

tions (Harris, 2016). The ARM HWCPipe library was utilized for the 
collection of cycle counters (Developers, 2021). In terms of CPU-based 
time collection, the perf time was acquired similarly to the methodology 
for RPi devices, leveraging the perf_counter_ns() function. The software 
to facilitate GPU task execution was modified from the source found in 
the ARM Compute Library (Developer, 2021).

The data collection was executed for one week in these nine devices 
to have a large enough dataset for this secondary validation, around 
4000 samples were collected per device in this period. Then, the data 
preprocessing steps were repeated as in the ElectroSense validation us-

ing Raspberry Pi devices, using a sliding window of 100 values and 
QuantileTransformer normalization. After, the hyperparameter search 
for the Transformer models in charge of the authentication of each de-

vice was performed.

Table 6 shows the authentication results from the nine devices em-

ployed in this validation. It can be seen that the results were even better 
than in the ElectroSense experiments. The TPR for all of the devices was 
above 0.90, while the maximum FPR stayed under 0.05 in all cases, 
enabling the threshold-based authentication as in the ElectroSense de-

ployment. The improved results in this validation occurred due to the 
decreased number of devices from the same model being compared. In 
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Table 6

Validation in simulated IoT scenario.

Device Model Device (MAC) TPR Max. FPR

RockPro64

86:a4:4c:5f:ff:95 0.8894 0.0417

8a:32:38:8c:63:e6 0.9217 0.0131

ee:db:54:9d:8a:67 0.9710 0.000

Rock64

42:58:a0:38:16:11 0.9094 0.007

76:8f:be:c0:c5:3b 0.9318 0.000

9a:1d:93:b3:b5:8f 0.9187 0.041

Orange Pi 2 Lite

c0:84:7d:82:4a:1e 0.9653 0.011

c0:84:7d:82:1c:42 0.9142 0.000

c0:84:7d:82:38:6d 0.9760 0.002

this sense, only three devices per model were present, so the similarities 
between the devices in the scenario were reduced.

This second validation approach serves as an example of how the 
proposed solution could be adapted to new scenarios where novel IoT 
device models are present, and code adoptions for data collection are 
necessary. It can be seen how the solution pipeline is still effective 
once the hardware monitoring is properly modified to gather the cy-

cle counters from the monitored components. Besides, the proposal has 
been validated with some more devices, enhancing the scalability of the 
demonstrated solution.

6. Discussion

This section outlines the limitations intrinsic to the suggested ap-

proach and provides essential understanding obtained from the research 
carried out. Through the series of tests performed in this work, coupled 
with a comparative analysis with existing literature, valuable observa-

tions and conclusions emerge. These findings serve not only as lessons 
gained but also highlight certain restrictions and limitations. The enu-

meration of lessons learned is as follows:

Potential of Transformer Models for IoT Authentication. The 
achieved results illustrate the innovative application of Transformer 
models in the field of hardware-based authentication. By employing 
a Transformer model, the framework was able to capture complex 
patterns in hardware behavior of each device, demonstrating a novel 
approach that could pave the way for future research in security and 
authentication. This lesson emphasizes the adaptability and potential of 
Transformer models in areas beyond natural language processing.

Importance of Resource Usage Consideration. The resource anal-

ysis emphasizes the critical consideration of resource usage during 
training and evaluation when developing Machine Learning or Deep 
Learning-based solutions. Different models demonstrated distinct com-

putational characteristics in terms of training time, evaluation time, and 
memory usage. For example, the 1D-CNN model was found to be the 
most efficient, while the Transformer model had a significantly higher 
memory usage. These trade-offs between time, memory usage, and po-

tential model accuracy must be carefully weighed when selecting the 
most suitable model for an IoT scenario where processing resources are 
limited.

Versatility and Importance of Preprocessing Techniques The pa-

per emphasizes the importance of preprocessing techniques in handling 
time series data. The use of methods like grouping into vectors and data 
normalization (using QuantileTransformer) was essential in uncovering 
intricate trends within the data. This lesson serves as a reminder that 
preprocessing is not a one-size-fits-all step but a critical and adaptable 
component of the data analysis process, with significant implications 
for the success of the modeling and authentication framework.

Adaptability to New Scenarios. Based on the results of the second 
validation using additional IoT devices, it can be seen how only small 
changes in the data collection process are necessary to adapt the solu-

tion to the hardware of new devices. The remaining Transformer-based 
authentication pipeline remains functional in different scenarios and is 

hardware agnostic, enabling the application of the solution in a wide va-

riety of environments as an additional security layer and complimenting 
traditional software-based authentication.

Conversely, the subsequent constraints and limitations have been 
noted and warrant consideration in upcoming studies within this field:

Determining Hardware Behavior Measurements and Hyperpa-

rameter Tuning. The process of identifying the appropriate hardware 
behavior measurements or feature extraction for individual device au-

thentication is complex and multifaceted. The implementation of the 
proposed methodology may necessitate multiple exploratory iterations 
to discover a combination that satisfies all the required properties in 
the generated fingerprint. Additionally, the Transformer model intro-

duces further complexity due to the need for hyperparameter tuning. 
Finding the optimal set of hyperparameters for the Transformer model 
requires a meticulous search, adding to the trial-and-error nature of 
the process. This iterative analysis can be significantly minimized by 
examining the properties of the leveraged devices, including different 
components and operating frequencies, and by employing systematic 
hyperparameter optimization techniques. Since every chip inherently 
contains imperfections, the real challenge lies in devising accurate and 
effective methods to measure them and in fine-tuning the Transformer 
model to capture these unique characteristics. This complexity adds 
multiple layers of difficulty to the process and may require careful con-

sideration, experimentation, and optimization to achieve the desired 
authentication accuracy.

Training and Evaluation Time. The varying training and evalua-

tion times across different models, with the Transformer model exhibit-

ing the longest evaluation time, present a limitation that may affect its 
suitability in time-sensitive applications. This constraint highlights the 
importance of considering both accuracy and computational efficiency 
in model selection and design.

Threshold Setting for Anomaly Detection. During validation, the 
anomaly detection threshold is set at 10% of the reconstruction error 
in the training samples fed to the Transformer models. This choice of 
threshold might have specific implications on the sensitivity and speci-

ficity of the anomaly detection as it is manually assigned.

Possible performance degradation over time. As with any hard-

ware, the components of IoT devices may undergo wear and tear, lead-

ing to gradual changes in their performance metrics. This natural aging 
process can alter the cycle skew and other performance parameters that 
the authentication system initially learned and recognized (Halak et al., 
2016). It has been experimentally verified that during the 100 days of 
data collection, the hardware performance has remained stable. To that 
end, the authentication experiments were repeated with different splits 
in the train/test data of each device, achieving very similar results no 
matter how the data was selected. However, longer periods might have 
a larger impact on hardware degradation.

7. Conclusions and future work

This paper proposes a framework for individual device authenti-

cation based on hardware behavior and outlier detection, which fun-

damentally relies on identifying inherent imperfections in the device 
chips. The framework, which leverages hardware behavior fingerprint-

ing and Transformer autoencoders, establishes a unique ‘fingerprint’ for 
each device based on manufacturing imperfections in CPU, GPU, RAM, 
and Storage, even in those with identical specifications. These imperfec-

tions are modeled by generating a model trained with the “normal” data 
distribution of the hardware performance of each device. This provides 
a robust mechanism for device authentication, distinguishing between 
genuine and potentially harmful devices. The framework follows a mod-

ular design where device monitoring and security enforcement modules 
are deployed in the device and the data processing modules are hosted 
in a server with enhanced processing capabilities.

The practical implementation of this authentication framework in 
the ElectroSense platform demonstrates its effectiveness and real-world 
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applicability. After 100 days of data collection using 45 Raspberry Pi de-

vices, the Transformer-based autoencoder approach was implemented 
and compared with other state-of-the-art Deep Learning architectures 
such as LSTM and 1D-CNN for anomaly detection in time series. Despite 
the competitive performance of LSTM and 1D-CNN, the Transformer 
model emerged as the superior method, successfully authenticating all 
the devices. An average True Positive Rate (TPR) of 0.74±0.13 and an 
average maximum False Positive Rate (FPR) of 0.06±0.09 are achieved 
when performing one-versus-all authentication, a more complex task 
than the classification-based identification performed by other solutions 
in the literature. From these results, it can be concluded that the pro-

posed approach not only prevents unauthorized device intrusions but 
also significantly contributes to the reliability of data analysis and the 
overall trustworthiness of the platform.

Moving forward, this research line has room for future work and 
improvements. While the current study has focused on Raspberry Pi de-

vices, further research should involve testing the proposed model with 
other IoT devices, expanding its scope, and ensuring its applicability 
across a broad range of hardware. In addition, the study has examined 
the model effectiveness primarily in the context of a spectrum crowd-

sensing platform, ElectroSense. Future investigations could explore its 
implementation in different types of crowdsensing applications, thereby 
contributing to a comprehensive understanding of the framework ver-

satility.
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Kozik, R., Pawlicki, M., Choraś, M., 2021. A new method of hybrid time window embed-

ding with transformer-based traffic data classification in iot-networked environment. 
Pattern Anal. Appl. 24 (4), 1441–1449.

Laor, T., Mehanna, N., Durey, A., Dyadyuk, V., Laperdrix, P., Maurice, C., Oren, Y., 
Rouvoy, R., Rudametkin, W., Yarom, Y., 2022. Drawnapart: a device identification 
technique based on remote gpu fingerprinting. ArXiv preprint arXiv :2201 .09956.

Li, D., Li, Q., 2020. Adversarial deep ensemble: evasion attacks and defenses for malware 
detection. IEEE Trans. Inf. Forensics Secur. 15, 3886–3900.

Marabissi, D., Mucchi, L., Stomaci, A., 2022. Iot nodes authentication and id spoofing 
detection based on joint use of physical layer security and machine learning. Future 
Internet 14 (2), 61.

Microchip, 2021. Cryptoauthentication. (Accessed 10 October 2023).

Microsoft, 2021. Azure Sphere. (Accessed 10 October 2023).

NXP, 2021. A71ch Secure Element. (Accessed 10 October 2023), Online.

Rajan, A., Jithish, J., Sankaran, S., 2017. Sybil attack in iot: modelling and defenses. 
In: 2017 International Conference on Advances in Computing, Communications and 
Informatics (ICACCI). IEEE, pp. 2323–2327.

Rajendran, S., Calvo-Palomino, R., Fuchs, M., Van den Bergh, B., Cordobés, H., Giustini-

ano, D., Pollin, S., Lenders, V., 2018. Electrosense: open and big spectrum data. IEEE 
Commun. Mag. 56 (1), 210–217.

Rambus, 2021. Cryptomanager Iot Device Management. (Accessed 10 October 2023).

Salo, T.J., 2007. Multi-factor fingerprints for personal computer hardware. In: MILCOM 
2007-IEEE Military Communications Conference, pp. 1–7.

Sánchez, P.M.S., Celdrán, A.H., Bovet, G., Pérez, G.M., 2022. Adversarial attacks and de-

fenses on ml-and hardware-based iot device fingerprinting and identification. ArXiv 
preprint arXiv :2212 .14677.

Sánchez, P.M.S., Valero, J.M.J., Celdrán, A.H., Bovet, G., Pérez, M.G., Pérez, G.M., 2021. 
A survey on device behavior fingerprinting: data sources, techniques, application sce-

narios, and datasets. IEEE Commun. Surv. Tutor. 23 (2), 1048–1077.

Sánchez, P.M.S., Valero, J.M.J., Celdrán, A.H., Bovet, G., Pérez, M.G., Pérez, G.M., 2023a. 
Lwhbench: a low-level hardware component benchmark and dataset for single board 
computers. Int. Things 22, 100764.

Sánchez, P.M.S., Valero, J.M.J., Celdrán, A.H., Bovet, G., Pérez, M.G., Pérez, G.M., 2023b. 
A methodology to identify identical single-board computers based on hardware be-

havior fingerprinting. J. Netw. Comput. Appl., 103579.

Sanchez-Rola, I., Santos, I., Balzarotti, D., 2018. Clock around the clock: time-based device 
fingerprinting. In: 2018 ACM SIGSAC Conference on Computer and Communications 
Security, pp. 1502–1514.

Sánchez Sánchez, P.M., 2023. Authentication IoT transformer. https://github .com /sxz0 /
Authentication _IoT _Transformer. (Accessed 8 October 2023). Online.

Shamsoshoara, A., Korenda, A., Afghah, F., Zeadally, S., 2020. A survey on physical 
unclonable function (puf)-based security solutions for Internet of things. Comput. 
Netw. 183, 107593.

Shrivastava, A., Haripriya, D., Borole, Y.D., Nanoty, A., Singh, C., Chauhan, D., 2022. 
High performance fpga based secured hardware model for iot devices. Int. J. Syst. 
Assur. Eng. Manag., 1–6.

Stellios, I., Kotzanikolaou, P., Grigoriadis, C., 2021. Assessing iot enabled cyber-physical 
attack paths against critical systems. Comput. Secur. 107, 102316.

Sánchez, P.M.S., Celdrán, A.H., Bovet, G., Pérez, G.M., Stiller, B., 2023c. Specforce: a 
framework to secure iot spectrum sensors in the Internet of battlefield things. IEEE 
Commun. Mag. 61 (5), 174–180.

Single-board Device Individual Authentication based on Hardware
Performance and Autoencoder Transformer Models

106 PhD Thesis – Pedro Miguel Sánchez Sánchez



Computers & Security 137 (2024) 103596

11

P.M. Sánchez Sánchez, A. Huertas Celdrán, G. Bovet et al.

Tuli, S., Casale, G., Jennings, N.R., 2022. Tranad: deep transformer networks for anomaly 
detection in multivariate time series data. ArXiv preprint arXiv :2201 .07284.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., 
Polosukhin, I., 2017. Attention is all you need. Adv. Neural Inf. Process. Syst. 30.

Wang, C., Wang, D., Tu, Y., Xu, G., Wang, H., 2020. Understanding node capture attacks 
in user authentication schemes for wireless sensor networks. IEEE Trans. Dependable 
Secure Comput. 19 (1), 507–523.

Yu, J.J.Q., 2020. Sybil attack identification for crowdsourced navigation: a self-supervised 
deep learning approach. IEEE Trans. Intell. Transp. Syst. 22 (7), 4622–4634.

Zhang, J., Rajendran, S., Sun, Z., Woods, R., Hanzo, L., 2019. Physical layer security for 
the Internet of things: authentication and key generation. IEEE Wirel. Commun. 26 
(5), 92–98.

Zhong, S., Zhong, H., Huang, X., Yang, P., Shi, J., Xie, L., Wang, K., Zhong, S., Zhong, H., 
Huang, X., et al., 2019. Connecting human to cyber-world: security and privacy is-
sues in mobile crowdsourcing networks. In: Security and Privacy for Next-Generation 
Wireless Networks, pp. 65–100.

Pedro Miguel Sánchez Sánchez received the M.Sc. degree in computer science from 
the University of Murcia. He is currently pursuing his PhD in computer science at Univer-

sity of Murcia. His research interests are focused on continuous authentication, networks, 
5G, cybersecurity and the application of machine learning and deep learning to the pre-

vious fields.

Alberto Huertas Celdrán received the M.Sc. and Ph.D. degrees in computer science 
from the University of Murcia, Spain. He is currently a postdoctoral fellow associated 
with the Communication Systems Group (CSG) at the University of Zurich UZH. His 
scientific interests include medical cyber-physical systems (MCPS), brain-computer inter-

faces (BCI), cybersecurity, data privacy, continuous authentication, semantic technology, 
context-aware systems, and computer networks.

Gérôme Bovet is the head of data science for the Swiss DoD, where he leads a re-

search team and a portfolio of about 30 projects. His work focuses on machine/deep 
learning approaches applied to cyber-defence use cases, with emphasis on anomaly de-

tection, adversarial and collaborative learning. He received his Ph.D. in networks and 
systems from Telecom ParisTech, France, in 2015.

Gregorio Martínez Pérez is Full Professor in the Department of Information and 
Communications Engineering of the University of Murcia, Spain. His scientific activity is 
mainly devoted to cybersecurity and networking, also working on the design and auto-

nomic monitoring of real-time and critical applications and systems. He is working on 
different national (14 in the last decade) and European 1ST research projects (11 in the 
last decade) related to these topics, being Principal Investigator in most of them. He has 
published 160+ papers in national and international conference proceedings, magazines 
and journals.

Journal Article 6

PhD Thesis – Pedro Miguel Sánchez Sánchez 107




	Contents
	Acknowledgements
	Agradecimientos
	Abstract
	Introduction and motivation
	Objectives
	Methodology
	Results
	Conclusions and future work

	Resumen
	Introducción y motivación
	Objetivos
	Metodología
	Resultados
	Conclusiones y trabajo futuro

	Bibliography
	Other publications/works
	Publications composing the PhD Thesis
	A Survey on Device Behavior Fingerprinting: Data Sources, Techniques, Application Scenarios, and Datasets
	Introduction
	Motivation and Contributions
	Behavior Characterization Analysis
	Behavior Processing and Evaluation Techniques
	Behavior-based Solutions and Applications
	Public Datasets
	Lessons Learned, Trends and Challenges
	Conclusion

	A methodology to identify identical single-board computers based on hardware behavior fingerprinting
	Introduction
	Related Work
	Problem Statement
	Methodology Definition
	Methodology Validation
	Discussion, Lessons learned and limitations
	Conclusions and Future Work

	LwHBench: A low-level hardware component benchmark and dataset for Single Board Computers
	Introduction
	Related Work
	Benchmark and Dataset Generation Methodology
	LwHBench benchmark and dataset
	Data Exploration and Use Cases
	Real-world Deployment in an Agriculture Scenario
	Discussion
	Conclusions and Future Work

	SpecForce: A Framework to Secure IoT Spectrum Sensors in the Internet of Battlefield Things
	Introduction
	Cybersecurity Threats of IoBT Spectrum Sensors
	SpecForce Framework
	SpecForce Implementation and Results
	Conclusions

	Adversarial attacks and defenses on ML- and hardware-based IoT device fingerprinting and identification
	Introduction
	Motivation and Contributions
	Behavior Characterization Analysis
	Behavior Processing and Evaluation Techniques
	Behavior-based Solutions and Applications
	Public Datasets
	Lessons Learned, Trends and Challenges
	Conclusion

	Single-board Device Individual Authentication based on Hardware Performance and Autoencoder Transformer Models
	Introduction
	Motivation and Contributions
	Threat Model
	Individual Device Authentication Framework
	Framework Validation
	Discussion
	Lessons Learned, Trends and Challenges
	Conclusions and Future Work



